

IBM VisualLift for MVS, VSE, VM, & OS/390
User's Guide

Version 1 Release 1

SC33-6691-02

IBM IBM VisualLift for MVS, VSE, VM, & OS/390
User's Guide

Version 1 Release 1

SC33-6691-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page ix.

Third Edition, June 1996

This edition applies to IBM VisualLift for MVS, VSE, VM, & OS/390 (5648-109). and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation or to: IBM Deutschland Entwicklung GmbH
Attn: Dept. ECJ - BP/003D Department 3248
6300 Diagonal Highway Schoenaicher Strasse 220
Boulder, CO 80301, D-71032 Boeblingen
U.S.A. Federal Republic of Germany

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks . ix

Chapter 1. Introduction . 1
Information . 1

VisualLift User's Guide . 1
Help Information . 2
VisualLift Online Solution Guide . 2
VisualLift Reference . 3
VisualLift Samples . 3

Skills for VisualLifting . 3
Who Should Read This Book? . 4
OS/2 and Windows Terminology . 4

Chapter 2. What is VisualLift? . 5
VisualLift and Host Applications . 6

3270 Terminals and Workstations . 6
Candidates for VisualLift . 6

VisualLift Characteristics . 6

Chapter 3. VisualLift Concepts . 7
Application Development Environment . 7

Tasks . 8
Graphical and Textual Mode . 9
Arrangement of Window Contents . 9

Run-Time Environment . 10
Tasks . 10

Technological Concept . 11
Integrity . 11

Application Invocation . 12
Run-time Processing Sequence . 12
Panel Identification Process . 14
Application Switching . 15
Mapping of Host Cursor and Input Focus . 15
Selection of the Active Notebook Page . 16
Data Mapping . 16
Mapping of Colors and Attributes . 17
Padding . 18

VisualLift and LAN . 19
LAN Installation (Server) . 20
LAN Installation (Client) . 20
Host Connection . 21

National Language Support . 21
Adding Your Own Functions to VisualLift . 22

Chapter 4. Installation . 23
Host Installation Process . 23
Diskette Installation Process . 23
Hard Disk Space . 23
System Requirements . 24

 Copyright IBM Corp. 1995, 1996 iii

Different Levels of VisualLift . 24
Check Service Levels . 24

Chapter 5. Getting Started . 25
Object Hierarchy . 25
Simulated 3270 Session . 26
Composer - VisualLift Sample Application . 26
Print - VisualLift Sample Application . 26
Sample Application README file . 26
VisualLift Workbench . 26
VisualLift Online Solution Guide . 27

Design Guidelines . 27
Accessing the Solution Guide . 28

Chapter 6. Using VisualLift . 31
Terminology . 31
VisualLift Tasks . 31

Start . 31
Interaction Techniques . 32

Setting-up VisualLift - Task 0 . 34
Setting-up Your Host Environment . 34
Setting-up Your VisualLift Environment . 34

Creating a Project - Task 1 . 36
Scanning a Host Screen - Task 2 . 38
Designing a PWS Window - Task 3 . 40

Creating a PWS Window . 40
Defining Controls in Graphical Mode . 41
Transforming Graphical into Textual Representation 47
Defining Controls in Textual Mode . 48

Performing Mapping - Task 4 . 53
Building a Panel ID - Task 5 . 57
Building an Application - Task 6 . 58
Testing a VisualLifted Application - Task 7 . 63
Distributing a VisualLifted Application - Task 8 64

Installing the Run-Time Environment . 64
Installing a VisualLifted Application . 64
Distribution via Diskette or LAN . 65
Distribution via Host . 65

Running a VisualLifted Application - Task 9 . 66
Creating a Program Object . 66

Optional Tasks . 66
Defining Events . 67
Supplying Application Provided Routines . 67
Supplying Help . 68
Supporting Multiple Languages . 69

Translating VisualLift RTE Messages . 70

Chapter 7. VisualLift RTE for Windows . 71
Deviations of VisualLift RTE for Windows . 71
Windows Considerations for VisualLift ADE . 71

User Interface . 71
Application Provided Routines . 71
Help Information . 72
Environment Variables . 72

iv VisualLift User's Guide

Minimize Icons . 72
Graphic File Formats and Location . 73

Space and Time Performance . 73
Start a VisualLifted Application . 73

Create the Program Item . 74
Start Applications without Specification . 75

Pre-loading VisualLift Libraries during Startup 76
How to Free Space Occupied by VisualLift . 77

Chapter 8. VisualLift and Automated Build Process 79
Generate PWS Window (Text) from PWS Window 79
Generate Textual Application Format from Application 79
Generate PWS Window from PWS Window (Text) 80
Generate Application from Textual Application Format 80
Check Semantical Correctness of a PWS Window 80

Chapter 9. VisualLift Hints and Tips . 81
General Hints . 81
VisualLift Workbench . 82

Export and Import . 82
Exclude and Include . 82
Transformation . 82
Designing a PWS Window - FAST! . 83
Refresh . 83

Graphic Editor Hints . 84
Drag and Drop . 84
Window . 84
Dynamic Entry Fields . 84
Accelerator Keys . 84
Controls and Group Controls . 84
Message Mapping . 84
Deleting Controls . 85

RTE Hints . 85
Terminal Models . 85
Monitor Resolution . 85

Chapter 10. Problem Determination . 87
Common Problems . 87
Trouble Log . 88

Trouble Log within OS/2 RTE . 88
Trouble Log within Windows RTE . 88
VisualLift OS/2 Symptoms . 89
VisualLift Windows RTE Symptoms . 93

Appendix A. System Requirements . 97
Supported Host Operating Systems . 97
VisualLift Application Development Environment 97
VisualLift OS/2 Run-Time Environment . 97
VisualLift Windows Run-Time Environment . 98
Optional Workstation Software . 98

Appendix B. System Information . 99
Files of a VisualLifted Application . 99
Files of a VisualLifted Window . 100

 Contents v

CONFIG.SYS Updates by OS/2 VisualLift . 100
Environment Variables . 101

Environment Variables and Host Emulators for VisualLift RTE for Windows 102

Appendix C. Options for Running a VisualLifted Application 103

Glossary . 105

Index . 109

vi VisualLift User's Guide

 Figures

1. The Information Delivered with VisualLift . 1
2. The Tasks of a VisualLifter . 3
3. The Host . 5
4. The VisualLifted Window . 5
5. The Components of VisualLift . 7
6. Tasks to VisualLift a Host Application . 8
7. Tasks to Run a VisualLifted Application 11
8. VisualLift and the 3270 Data Stream . 11
9. VisualLift and LAN . 19

10. Hierarchy of VisualLift Objects . 25
11. VisualLift Solution Guide - Main selection 28
12. VisualLift Solution Guide - EntryField control 29
13. VisualLift EntryField+ Identical Mapping 30
14. The Host Screen Model to Create a VisualLifted Window 32
15. Tasks to VisualLift a Host Application . 33
16. The Host Screen Model to Create a PWS Window 38
17. Textual representation of check box 'Symphonies' 48
18. Textual representation of push button 'OK' 48
19. Textual Representation of the Composer - Private Data Window 50
20. The Trouble Log File . 88
21. The VisualLift File Types Related to an Application 99
22. The VisualLift File Types Related to a Window 100
23. The Environment Variables of VisualLift 101
24. The Environment Variables for Supported Emulators 102

 Copyright IBM Corp. 1995, 1996 vii

viii VisualLift User's Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood NY 10594, U.S.A.

 Trademarks
The following terms, used in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

Common User Access

CUA

IBM

IBM DOS

MVS/ESA

OS/2

OS/39ð

PS/2

Systems Application Architecture

SAA

S/37ð

S/39ð

VGA

VM/ESA

VSE/ESA

VisualLift

XGA

The following terms, used in this publication, are trademarks or registered
trademarks of other companies:

Microsoft, Windows, Windows/NT and the Windows 95 logo are trademarks of

Microsoft Corporation

MS-DOS Microsoft Corporation

EXTRA! Attachmate Corporation

RUMBA Wall Data Incorporated

DCA Digital Communication Associates, Inc.

IRMA Digital Communication Associates, Inc.

NetSoft NetSoft

DynaComm/Elite Future Soft Engineering, Inc. and NetSoft

 Copyright IBM Corp. 1995, 1996 ix

x VisualLift User's Guide

 Information

 Chapter 1. Introduction

Welcome to IBM VisualLift for MVS, VSE, VM & OS/390 the user interface
modernizer for S/370 and S/390 applications. With VisualLift you can design an
OS/2 or Windows workstation user interface for MVS, VSE, VM, and OS/390
applications.

To work with VisualLift is easy and fast: for novice users the graphic editor is
suitable to design the workstation windows, and for expert users the textual
representation is the productive way to define workstation windows. Before you
start, please read the following information carefully - you will benefit later when
using VisualLift.

 Information
The information provided with VisualLift is structured according to the various
stages of working with VisualLift. The following information is provided with
VisualLift:

Figure 1. The Information Delivered with VisualLift

Type Purpose

User's Guide Use the VisualLift User's Guide to get a basic understanding
what VisualLift is and how to use it.

Help Use help information when using VisualLift. How to perform a
task or step are the questions which are answered by the
VisualLift help information. Help is available anywhere within
VisualLift.

Online Solution
Guide

Use the VisualLift Online Solution Guide to get information about
definitions and examples of controls, and about mapping and
mapping modes. It is the main source for designing PWS
windows.
See page 28 about how to access the Solution Guide.

Reference Use the VisualLift Reference when

� Working in textual mode
� Writing application provided routines (routines for your own

applications)
� Working with event files.

The VisualLift Reference provides answers for expert users. The
VisualLift Reference is located in the VisualLift Folder.

Samples Use the VisualLift Samples as a base how to learn writing
window definitions in textual mode. The VisualLift Samples are
located in the SAMPLES project.

VisualLift User's Guide
The VisualLift User's Guide provides the information necessary to use VisualLift.
The information is conceptual and explanatory. For example, concepts of VisualLift
are described as well as a step by step sample on how to VisualLift a host
application. The following provides an overview of the various chapters:

 Copyright IBM Corp. 1995, 1996 1

 Information

1 Introduction explains how the information of VisualLift is organized (who
uses what with which skill).

2 Chapter 2, “What is VisualLift?” explains in form of an overview what
VisualLift is all about.

3 Chapter 3, “VisualLift Concepts” explains the fundamentals of VisualLift.

4 Chapter 4, “Installation” contains and refers to the information needed to
install the VisualLift OS/2 ADE and RTE as well as the VisualLift Windows
RTE.

5 Chapter 5, “Getting Started” explains the purpose of the objects residing
in the VisualLift folder.

6 Chapter 6, “Using VisualLift” is the main chapter of this book. Here you
find all information how to work with VisualLift. A scenario is used to explain
how to VisualLift an application.

7 Chapter 7, “VisualLift RTE for Windows” informs you about the
deviations of the Windows RTE version of VisualLift compared to the OS/2
RTE version of VisualLift.

8 Chapter 8, “VisualLift and Automated Build Process” describes
commands to perform an automated build process for the PWS windows and
the application itself.

9 Chapter 9, “VisualLift Hints and Tips” is the chapter where the tricks of
the trade are unfolded.

10 Chapter 10, “Problem Determination” explains how to proceed in case of
an error.

 Help Information
VisualLift comes with extensive help. The VisualLift help information is task
oriented and always available. You can obtain help at any time by:

� Pressing F1 anywhere in VisualLift
� Selecting the menu bar Help and the respective pull-down
� Pressing the Help push button.

VisualLift Online Solution Guide
The Solution Guide offers information and help for the novice and experienced
user.
It provides

� Examples for the design of workstation windows.
� The definition of controls with the graphic editor.
� The textual representation of controls.

2 VisualLift User's Guide

 Skills for VisualLifting

� Information on the various mapping modes.
� Parts of host situations and suggested workstation solutions.
� Examples of different types of events.

 VisualLift Reference
The VisualLift Reference is designed for the experienced user and provides
detailed technical information on how to:

� Define controls via tags and parameters (textual mode)
� Write application provided routines

 � Define events.

You can use the VisualLift Reference in many ways:

� Double-click on the VisualLift Reference icon to view the contents
� Type FCLREF in the OS/2 command line to view the contents
� Type FCLREF parameter in the OS/2 command line to view the information for a

parameter, for example: FCLREF LAYOUT

 VisualLift Samples
Samples for each VisualLift control are located in the SAMPLES project within the
VisualLift Workbench. Samples for application provided routines are located in
fclroot1 \FCL\USEREXIT\SAMPLE.C

Skills for VisualLifting
The ideal person to VisualLift a host application has knowledge of the tasks listed
in Figure 2. The left column of the table lists the desirable skills. The right column
lists alternatives if these skills are not available. Alternatively several persons with
these skills may work in a team to exploit the benefits of VisualLift.

Figure 2. The Tasks of a VisualLifter

Task Where to Start? What to do?

Using OS/2 or
Windows

The OS/2 Tutorial is recommended to learn the basic interaction
techniques.
For a successful start using Windows study the tutorial delivered
with Windows. If you have no Windows experience, consider
using OS/2.

User interface
design

Object-Oriented Interface Design, SC34-4399, provides
guidelines to adhere to SAA Common User Access. See also
the VisualLift Solution Guide.

Host application
knowledge

The person who VisualLifts the host application should have
basic knowledge of the host application. The contribution of a
subject matter expert of the host application (during the design
phase) will improve the quality of the VisualLifted application.

Programming To write application provided routines is optional. If you want to
use the sophisticated functions of VisualLift within such routines
the C or C++ programming language is mandatory.
The programming interfaces of VisualLift are described in the
VisualLift Reference.

 Chapter 1. Introduction 3

 Skills for VisualLifting

Who Should Read This Book?
The person who wants to VisualLift a host application should read all chapters and
all tasks described in this book.

The person who uses the VisualLifted2 application should read Chapter 4,
“Installation” on page 23 - especially the installation of the RTE - and the tasks
concerning Run VisualLifted Application (described in “VisualLift Tasks” starting on
page 31).

OS/2 and Windows Terminology
All information for VisualLift is written in terms following the Object-Oriented
Interface Design, SC34-4399-00. OS/2 follows these guidelines - the Windows
user interface does not comply to this standard. Refer to the glossary “Glossary”
on page 105.

1 The notation fclroot\FCL\USEREXIT\SAMPLE.C indicates the drive, directory(ies), and file.

The environment variable fclroot is the placeholder for the drive and directory where VisualLift was installed, for example D:\LIFT.
For detailed information on environment variables refer to “Environment Variables” on page 101.

2 The term VisualLifted marks a host application as modernized with a new, VisualLifted user interface.

4 VisualLift User's Guide

 What is VisualLift?

Chapter 2. What is VisualLift?

VisualLift is a tool to modernize the user interface of existing host applications. The
new user interface is located on the workstation. The host application remains
untouched.

The difference is that the user interface interacts with the proven host application
via familiar workstation controls, such as push buttons, check boxes, notebooks,
and many more. Figure 3 and Figure 4 show the user interface of a host
application and the corresponding user interface of the VisualLifted window.

Screen

à ð
 ----------------------------- IC Print Menu ----------------------- Menu 1 of 2

 File to be printed ===> TEMP EOSPRINT A Print as ===> EOSPRINT

 Print information:

Printer ===> BOE16ð44 (Press PF1 for printer selection)

Classification ===> UNC (UNC, IUO, IC, or ICR)

===> S (A = all pages, S = Separator page only)

Document Type ===> NOCC (NOCC,FLAT,CC,TRC,DCF,GML,Bookie, RFT)

Language ===> US (Press PF1 for language selection list)

 Distribution ===> 71ð32-ð6 (Distribution info on separator page)

Copies ===> 1 (1 - 99)

Lines per inch ===> 8 (1 - 18, (6, 8, 12 for DCF))

Fonts (max 4) ===> XðGT2A (PF1 for list)

Top margin ===> YES (ð to 9.99 inch, Yes, or No)

Left margin ===> YES (ð to 9.99 inch, Yes, or No)

Duplex ===> YES (No, Yes, or Tumble)

Orientation ===> ð (ð or N, 9ð or E, 18ð or S, 27ð or W)

Page mode ===> NO (No = line mode, Yes = all points addr.)

Print/Save/Disp ===> P (P = Print, S = Save Output, D = Display)

 Command ===>

 Enter=Run PF1=Help 3=Exit 4=Check 8=Next 9=Def 1ð=Save 12=Run&Exit

á ñ

Figure 3. The Host

Figure 4. The VisualLifted Window

 Copyright IBM Corp. 1995, 1996 5

 What is VisualLift?

VisualLift and Host Applications
A VisualLifted application consists of the unchanged host application and the user
interface at the workstation. All logic and data of the host application remains on
the host. VisualLift adapts to the host application in such a way that the host
application thinks it is talking to 3270 terminals. The user of the host application
has now the choice to work with:

� The traditional host user interface
� The OS/2 user interface
� The Windows user interface.

3270 Terminals and Workstations
No matter whether you are using 3270 terminals or VisualLift equipped
workstations: you can use the same host application concurrently on a 3270
terminal or on a workstation. The coexistence of 3270 terminals and workstations
guarantees you to exchange 3270 terminals by workstations step by step.

VisualLift is designed to work with S/370 and S/390 hardware. VisualLift supports
heterogeneous environments where workstations, either stand alone or connected
via a LAN, are connected to a S/370 or S/390 host running MVS, VSE, VM, or
OS/390.

Candidates for VisualLift
All host applications based on the 3270 user interface technology are candidates
for VisualLift - even those host applications where the source code is no longer
available can be VisualLifted.

Regardless whether the host application runs under MVS, VSE, VM, or OS/390 -
you can modernize their user interface with VisualLift. If you are running, for
example, VSE and VM based applications, you can give both, VSE applications
and VM applications, one consistent user interface with VisualLift.

 VisualLift Characteristics
� Increases the end-user productivity by using workstation controls
� Maintains the same reliability, availability and serviceability characteristics as

the underlying host applications
� Provides consistency of the workstation user interface across host applications

and workstation applications
� Requires no changes to the host application
� Uses an object oriented toolkit for developing the workstation user interface

without programming
� Supports national languages on the workstation interface without changing the

host application
� Organizes the user interfaces of host applications in folders on the desktop.

6 VisualLift User's Guide

 VisualLift Concepts � Application Development Environment

 Chapter 3. VisualLift Concepts

 Hint

This chapter describes the conceptual and technological background of
VisualLift and may be skipped for first reading.

VisualLift is a user interface modernizer for host applications. VisualLifting a host
application is performed in the application development environment (ADE). The
ADE is available on OS/2. To run a VisualLifted application, the run-time
environment (RTE) is used. The RTE is available either for OS/2 or Windows.
Therefore VisualLifting a host application has to be done in the ADE - independent
of whether it will run in the OS/2 or Windows environment. Figure 5 illustrates the
principle.

MVS/ESA
VSE/ESA
VM/ESA
OS/390

OS/2

OS/2 Windows

d
is
tr
ib

u
te

d
is
tr
ib

u
te

for scanning and testing only

run the VisualLifted application

Run-Time Environment

Application Development

Figure 5. The Components of VisualLift

The advantage of this concept? A host application is VisualLifted on an OS/2
equipped workstation. Once the host application is VisualLifted it can be distributed
either to OS/2 or Windows based workstations. Your users have the choice to
select the preferred user interface for their host application.

Application Development Environment
The ADE is the part of VisualLift where the new user interface for the host
application is designed, created, and bundled. The ADE becomes visible to you in
the form of the VisualLift Workbench. The VisualLift Workbench is the place from
which VisualLifting starts and all VisualLift tasks to VisualLift a host application are
performed.

 Copyright IBM Corp. 1995, 1996 7

 Application Development Environment

 Tasks
The tasks to VisualLift a host application are shown in Figure 6. Perform all tasks
in the shown sequence and the VisualLifted application will be successfully created.
Chapter 6, “Using VisualLift” on page 31 provides detailed information on how to
perform the tasks.

Figure 6. Tasks to VisualLift a Host Application

8 VisualLift User's Guide

 Application Development Environment

Graphical and Textual Mode
As shown in Figure 6 on page 8, the steps Design PWS Window and Perform
Mapping can be performed either in graphical or in textual mode. Basically the
graphical mode is for the novice user - it is more intuitive, whereas the textual
mode is for the experienced user - it is more productive.

Both modes are interchangeable. You can transform the graphical mode into the
textual mode - or vice versa. This option provides an easy transition from the
graphical representation to the declarative language - the textual representation.
The structure of the language is described in the VisualLift Reference. The
VisualLift Reference and the delivered samples are the base to write window
definitions.

VisualLift does not synchronize both formats automatically:

1. The text editor runs in a separate OS/2 session and cannot be controlled by
VisualLift

2. It is sometimes desirable to maintain both formats separately. For example,
you can use the graphic editor to investigate a design alternative, and keep the
original textual format as backup.

When using both modes be very careful when switching back and forth. You
must avoid overwriting changes you applied in one mode by changes you
applied in the other mode.

 Be aware

To avoid accidental overwriting of changes performed in the other mode,
always use the File rather than the Save action to store changes in either
format.

is the graphical representation of the window smpstat . A
double-click on the icon opens the VisualLift graphic editor where
controls can be created or changed via dialogs and drag and drop
operations.
is the textual representation of the window smpstat . A double-click
on the icon opens the text editor where controls can be created or
changed by editing and also by cutting and pasting text elements.

Arrangement of Window Contents
Unlike most other user interface editors, the VisualLift graphic editor does not allow
to define the sizes and positions of controls in a window in terms of pixels, dialog
units, or (x,y) coordinates. With the VisualLift graphic editor the controls are
arranged using relative layouting rather than specifying absolute sizes and
positions.

The advantage of a relative layout is greater flexibility when modifying the window.
Adding, removing, or changing the location or size of controls within a window
usually makes it necessary to reconsider the layout of the other controls. After that
kind of modifications VisualLift uses relative layout information to automatically
re-arrange all controls of the window. This also applies to other modifications that
may affect the layout at run-time, for example, using different fonts or text strings
with a variable length. Different fonts result in different control sizes, especially for
the different target systems OS/2 and Windows. If text strings are used where the

 Chapter 3. VisualLift Concepts 9

 Run-Time Environment

content depends on an actual value of the host application or changes due to
multiple national languages, those different values also influence the window layout.
Also in those cases VisualLift will adapt the window layout to the actual
requirements, using the relative layout information that is defined for the window.
This adaptation is performed dynamically at application run-time.

You define relative layout using the VisualLift layout controls and attributes.
Layout controls define the location of controls within the window in terms of lines
and columns. The layout controls

 � ColumnHeadingGroup
 � ColumnHeading
 � ColumnGroup
 � Column
 � Line
 � Group
 � Space and
 � Scale

are available in the templates folder of the graphic editor. For example, dragging a
Scale box into your window and then a set of EntryFields into the Scale will reduce
or expand the spaces between the EntryFields, depending to the X- and Y-factors
that you specify for Scale.

Layout attributes define how controls are aligned and expanded horizontally
and/or vertically. The layout attributes

 � Justify and
 � Expand

can be specified in the Attributes notebook that is displayed when you double-click
on a control in the graphic editor. For example, specifying Expand=Horizontal for
an EntryField will expand the horizontal size of the EntryField to the available size,
even if the specified width is smaller.

 Run-Time Environment
The RTE is the executing part of VisualLift. It is used to run the VisualLifted
application. The RTE is the bridge between the user interface on the workstation
and the application on the host. Basically, the RTE invokes and terminates the
host application, displays the workstation user interface, and manages user input.

 Tasks
The tasks to run a VisualLifted application are shown in Figure 7 on page 11.
Chapter 6, “Using VisualLift” on page 31 provides information on how to perform
these tasks.

10 VisualLift User's Guide

 Technological Concept � Integrity

Figure 7. Tasks to Run a VisualLifted Application

 Technological Concept
VisualLift converts the host user interface (based on 3270 technology) to a
workstation user interface. The 3270 data stream is intercepted by the RTE. The
RTE exchanges the screen information of the 3270 data stream with the
workstation windows. Additionally, the RTE manages the user input from the
workstation. The result is the new user interface on the workstation. Figure 8
illustrates the principle.

MVS/ESA
VSE/ESA
VM/ESA
OS/390

Run-Time Environment

WorkstationHost

3270 Emulation

OS/2
or

Windows

3270 Data Stream

Identify host screen

Display VisualLifted window

Receive user input

Send data to host

Interception of 3270 Data Stream

Figure 8. VisualLift and the 3270 Data Stream

 Integrity
The VisualLift integrity feature guarantees that the underlying host application
continues to function in all cases. That means, no matter where an error occurs or
whatever the reason is - users are able to continue their work.

Take the case that the host application changes a screen with a new release.
VisualLift recognizes this. VisualLift automatically presents the changed host
screen in the 3270 emulator window. The application continues uninterrupted.

 Chapter 3. VisualLift Concepts 11

 Integrity

Then VisualLift switches back into normal operation with the next VisualLifted
window it encounters.

 Application Invocation
When a VisualLifted application is started, the RTE processes the parameters that
have been defined in the settings for that application.

1. Init condition parameters
The definition of initiation conditions is optional. You can define one or more
initiation conditions where each condition is characterized by a string occurring
at a certain position in the host screen. Defining initiation conditions assures
that the correct host screen is visible in the emulator window if the application
is to be invoked. Only if all initiation conditions fall true, the application will be
invoked, otherwise the invocation process is terminated with an error message

 2. Invocation parameters
The invocation command is placed at the specified position in the host screen
and the function key is sent. After the resulting first host screen update the
RTE starts its processing sequence as described in the next section. If the
system is "CMS", the CLEAR key is sent before the specified function key. The
system parameter determines also which events (see “Defining Events” on
page 67) will be processed by comparing it with the system parameter that is
specified in the event definition.

The command and position may be omitted, for example, if the application is
invoked by just sending a PF key. If the function key is also omitted, the
run-time processing sequence starts immediately.

3. End condition parameters
The definition of end conditions is optional. You can define one or more end
conditions where each condition is characterized by a string occurring at a
certain position in the host screen. The end conditions characterize the host
screen allowing the RTE to recognize that the host application has ended. As
a result of that (only if all end conditions fall true), the VisualLifted application
also terminates.

If no end condition is specified, the RTE keeps the application open forever,
staying in its processing sequence loop, as described in the following section.

Run-time Processing Sequence
As soon as a host screen update is detected, the RTE tries to identify the host
screen according to the following rules:

1. The updated host screen is scanned and its panel ID is generated.

2. It is checked whether there is a PWS window object having a panel ID that
matches the ID of the currently active host screen. This step is called panel
identification . The panel identification process observes the field structure of
the host screen (positions and lengths of all fields, but not the field contents),
the field protection states (protected/unprotected), and the extended panel ID
information. For details on the panel identification process refer to “Panel
Identification Process” on page 14.

If the panel identification process finds a PWS window in the VisualLifted
application with a matching panel ID, this PWS window is displayed. The user
interaction with the window results in another host screen update and the

12 VisualLift User's Guide

 Integrity

run-time processing sequence starts with step 1. If the panel identification
process does not find a matching panel ID, it continues with step 3.

Note: It may happen that the currently active host screen is not updated by a
user interaction, that means by an attention key (such as Enter, a PFx key,
PAx key, or Clear), but asynchronously by the host application. In those cases
it depends on the DynamicRefresh setting of the PWS window object whether
the data in the PWS window are updated with the new host data or not. Only
the controls in the PWS window which have the "dynamic refresh" flag set are
updated with the data of the host screen.

3. It is checked whether the application end conditions are fulfilled (refer also to
“Application Invocation” on page 12). If the application end conditions are
fulfilled, the panel identification process terminates the lifted application,
otherwise it continues with step 4.

4. It is checked whether the host screen should be handled as an event (see
“Defining Events” on page 67). The conditions specified in the application
event file are checked first, followed by the conditions in the system event file.
The event conditions are checked bottom-to-top, that is, the last event definition
in the event description file is checked first. Note that application switch events
are not processed in this step, but in step 5.

If one of the conditions is true, the RTE performs the processing that is defined
for this event in the event description file (for example, an event defined with
the parameters Action=Ignore and Key=Enter causes an enter key to be sent to
the host). The event processing results in another host screen update and the
run-time processing sequence starts with step 1. If no event could be detected,
it continues with step 5.

5. It is checked whether the host screen should be handled as an application
switch event . Although the application switch conditions are specified in the
event description file, they are checked only after all other event conditions are
checked, and none of them matches. Refer to “Application Switching” on
page 15 for more information.

If one of the conditions is true, the RTE closes the currently active VisualLifted
application, starts the new application, and the run-time processing sequence
starts with step 1. If no application switch could be detected, it continues with
step 6.

6. The 3270 emulator window is restored and put to the foreground. Additionally,
the title text of the 3270 emulator window changes to
VisualLift - X: Screen not recognized (MYAPPL)
where

X is the short identifier of the 3270 session
MYAPPL is the name of the VisualLift application

The RTE remains in this state until the next host screen update occurs. Then
the run-time processing sequence starts with step 1.

Any condition that is detected in the run-time processing sequence may be
overwritten or modified within a panel ID exit routine (see “Supplying Application
Provided Routines” on page 67).

 Chapter 3. VisualLift Concepts 13

 Integrity

Panel Identification Process
A VisualLifted application consists of one or more PWS windows, each representing
a screen of the corresponding host application. Whenever a screen appears on the
host at run-time, VisualLift substitutes this screen by a graphic user interface that
has been designed in an application development step. When the application is
running and VisualLift detects that an update on the host screen occurred, a panel
identification process is performed to find out which PWS window of the application
corresponds to the new or updated host screen. This is done by inspecting the
panel identification conditions of each PWS window of the VisualLifted application.

The screen of a 3270 host application is composed of a sequence of text elements
called 3270 fields. A field can be a static text that cannot be modified by the user,
or an input field where the user can type in data. Thus, a host screen can be
regarded as a sequence of fields with individual positions, sizes, contents, and
attributes. The panel identification algorithm uses the information about the
positions and sizes of the fields in the currently active host screen for panel
recognition. If the panel identification mode "Use all fields" has been selected at
application development time, the protection state (protected/unprotected against
modification) of each field is also respected. That is, the RTE finds a
corresponding PWS window for the currently active host screen only if the
positions, sizes, and protection states of all fields of that host screen are identical to
the positions, sizes, and protection states of the host screen object that has been
used at application development time to generate the panel ID. If, for example, the
protection fields need not be respected as the host dynamically changes the
protection state of fields, the "Use all fields, ignore protected attributes" algorithm
must be selected.

The two default panel identification algorithms "Use all fields" and "Use all fields,
ignore protected attributes" can be modified using "Extend/Modify panel ID
algorithm". In most cases, the default panel identification modes are sufficient, but
there are cases where the panel identification conditions must be modified, for
example:

� There are two or more screens of a host application with an identical field
structure: the panel identification cannot differentiate between those host
screens. If different PWS windows have been designed to map the host
screens, the application developer may differentiate between them by
specifying additional panel identification data.

� Some panels of a host application have dynamic portions, that is, the structure
of a host panel may change at run-time and therefore is different for different
usage scenarios of the same application. The application developer may
exclude the dynamic areas from panel identification to be able to map host
screens with different field structures using one PWS window.

See the online help for “Building a Panel ID - Task 5” on page 57 for further
explanation.

14 VisualLift User's Guide

 Integrity

 Application Switching
It is possible to invoke a VisualLifted application from within another VisualLifted
application. This feature is called application switching. A reason for exploiting the
application switching feature may be:

� There are different host applications that are VisualLifted as separate
applications and can be invoked separately, but on the host one application is
called internally by another one. For example, there may be a "print"
application that can be invoked by its own, but can also be called from different
other applications whenever the "print" task is needed.

� The host application consists of a large number of screens which would cause
the VisualLifted application file to become very large. For performance reasons
it may be useful to split up one large VisualLifted application into multiple
smaller ones. See also “General Hints” on page 81.

Application switching is controlled by application switch events and is performed in
the following steps:

� The currently active VisualLifted application is closed.

� The specified VisualLifted target application is opened. The invocation string
that is specified for the target application is not sent. Instead, it is assumed
that the currently active host screen is already part of the target application.
This also applies to the other application invocation parameters.

� All application-specific information of the source application is invalidated,
because it does not apply to the target application.

� If it is desired to establish switch-back mechanisms to return to the source
application, this must be done by specifying application switch events in the
application event file of the target application. There is no explicit return
mechanism for application switches.

� If the application end conditions are fulfilled for a target application, the RTE
ends, that means that also in this case there is no switch-back mechanism.

Mapping of Host Cursor and Input Focus
Here and on the next pages you will find lists in which the items are grouped
according to priority. In these lists, item 1 has the highest priority. If item 1 does
not apply, item 2 applies. If item 1 and item 2 do not apply, item 3 does, and so
forth. The last item in a list applies if all other previously listed items did not apply.

The host cursor is mapped to the PWS input focus observing the following
priorities:

1. If a mapping routine is defined that uses the function FclSetFocusVT, set the
input focus to the control that is referenced by the FclSetFocusVT service.

2. Set the input focus to the control that is defined with the InitialFocus=Yes
attribute.

3. Set the input focus to the control having a value mapping assignment to the
host field where the host cursor is currently located.

4. Set the input focus to the first control of the PWS window.

 Chapter 3. VisualLift Concepts 15

 Integrity

The PWS input focus is mapped to the host cursor observing the following
priorities:

1. If a mapping routine is defined that uses the function FclMapSetCursorPosition,
set the host cursor to the specified position.

2. Set the host cursor to the position referenced by the mapping parameter of the
control that is defined with the HostFocus=Yes attribute.

3. Set the host cursor to the position referenced by the value mapping parameter
of the control that currently has the PWS input focus.

4. Set the host cursor to the field that is last modified by PWS⇒host value
mapping.

Selection of the Active Notebook Page
If a PWS window contains a notebook control, the notebook page preselection is
done observing the following priorities:

1. If a mapping routine is defined that uses the function FclSetFocusVT, preselect
the notebook page containing the control that is referenced by the
FclSetFocusVT service.

2. Pre-select the notebook page that is defined with the InitPage=Yes attribute.

3. Pre-select the notebook page containing the control that has a value mapping
assignment to the host field where the host cursor is currently located.

4. Preselect the first notebook page.

 Data Mapping
Data mapping in host ⇒PWS direction determines which value will be used for the
control in the PWS window. It is performed observing the following priorities:

1. If a mapping routine is defined, use the value that is specified for the control in
that routine, using the FclPutVarVT or FclInsertListRowVT service.

2. If the access type of the control is Out or InOut, perform the host⇒PWS value
mapping that is defined for the control, including padding (refer to “Padding” on
page 18).

3. If there is an Init parameter specified for the control, use this value. The Init
parameter has only an effect if the access type is In, or the access type is
InOut, or the result of the host⇒PWS mapping that is defined for the control is
an empty string.

4. Empty the value (except if no mapping is specified at all).

Data mapping in PWS⇒host direction determines which value will be written into
the host field. It is performed observing the following priorities:

1. If a mapping routine is defined, use the value that is specified for the field in
that routine, using the FclMapUpdateField service.

2. If the access type of the control is In or InOut, perform the PWS⇒host value
mapping that is defined for the control, including padding (refer to “Padding” on
page 18).

3. Do not modify the host field.

16 VisualLift User's Guide

 Integrity

Mapping of Colors and Attributes
The PWS control colors are determined observing the following priorities:

1. If a mapping routine is defined, use the colors that are specified for the control
in that routine, using the FclPutVarVT, FclInsertListRowVT, or
FclSetListModeVT service.

2. If the MapEmphasis or MapListEmphasis parameter is specified for the control,
use the colors that are defined there.

3. Use the colors that are statically defined using the Color and BackColor
parameters.

4. Use the system default colors.

Color mapping is possible for the following controls:

 � CheckBox
� PushButton (only for OS/2)

 � EntryField
 � MultiLine
� Slider (only for OS/2)
� SpinButtonGroup (only for OS/2)

 � List
 � ComboBox
 � RadioButton
 � Static(Text)

The PWS control attributes (visible/invisible, enabled/disabled,
protected/unprotected) are determined observing the following priorities:

1. If a mapping routine is defined, use the attributes that are specified for the
control in that routine, using the FclPutVarVT, FclInsertListRowVT, or
FclSetListModeVT service.

2. Determine the control attributes using one of the following mapping
mechanisms:

� EnableBy, DisableBy, or Enable=No parameters are defined for the control
that allow to set the enable/disable attribute depending on the setting of
another control.

� The protection attribute is used to define the control as being protected.
� If the host field that is assigned to the PWS control by value mapping is

protected, the PWS control also becomes protected. Controls that do not
support the protected state become disabled.

� If the MapEmphasis or MapListEmphasis parameter is specified for the
control, use the attributes that are defined there.

Multiple attribute settings are connected by a logical OR condition. For
example, if a control is disabled by a MapEmphasis parameter, the disable
state of the control will not be overwritten by an EnableBy parameter.

3. Use the default attribute for the control (visible, enable, unprotected).

 Chapter 3. VisualLift Concepts 17

 Integrity

 Padding
The definition of padding characters affects the behavior of host⇒PWS as well as
PWS⇒host data mapping. Up to four different padding characters may be
specified, where PWS⇒host mapping uses only the first one.

When performing host ⇒PWS mapping, all specified characters will be used to
eliminate trailing padding characters from the value in the host field before it is
copied to the PWS value. For example, specifying Padding="." will remove the last
three dots from the host value ".../..." (resulting in PWS value ".../"). Specifying two
padding characters, Padding="." and Padding="/", will remove all characters from
the host value (resulting in an empty PWS value).

When performing PWS⇒host mapping, only the first padding character will be
used to fill the host field up to the available length if less characters are specified
for the PWS value. For example, specifying Padding="_" for an eight byte field will
result in "ABC_____" as host value, if "ABC" has been specified as PWS value.

Other examples for using padding characters may be:

� Padding=" ", Padding="_"
For host⇒PWS mapping, this will remove trailing blanks and underscores
(which are often used as initialization characters) from the host field. For
PWS⇒host mapping the host field is filled up with blanks.

 � Padding=No
For host⇒PWS mapping the host field value is copied unchanged to the PWS
value. For PWS⇒host mapping the PWS value is copied also unchanged to
the host value. If the length of the specified PWS value is shorter than the
length of the host value, the rest of the initial host value is not touched. For
example, if the initial host value is "YELLOW" and the specified PWS value is
"M" (not "M "), the resulting host value will be "MELLOW".

 � Padding=Null
Hexadecimal zero '00'X is used as padding character.

If no padding is specified, Padding=" " is assumed.

18 VisualLift User's Guide

 VisualLift and LAN

VisualLift and LAN
VisualLift is enabled to be used by several users on a LAN. Installing VisualLift on
a LAN enables the user of a VisualLifted application to work with a LAN based
VisualLift. Figure 9 illustrates the principle.

MVS/ESA

VSE/ESA

VM/ESA

OS/390

3270 Connection via Server

3270 Connection
via Adapter Card

OS/2 or
Windows

Server

OS/2 OS/2WindowsWindows

AUTOEXEC.BATAUTOEXEC.BAT

AUTOEXEC.BAT

CONFIG.SYS

CONFIG.SYS

CONFIG.SYS

Figure 9. VisualLift and LAN

Generally observe the following rules:

� The VisualLift directory structure (fclroot/FCL) must be both available on the
LAN (read-access) and on a user specific-device. This device can be

a local device or
a user specific LAN device where the user has write-access.

The directories on the user-specific device are initially empty.
If, for example, VisualLift is installed on X:\LANLIFT on the LAN server, and the
local copy of the VisualLift root directory structure is located on D:\LIFT, set
FCLROOTLAN to the LAN directory and FCLROOT to the local directory:

SET FCLROOTLAN=X:\LANLIFT

SET FCLROOT=D:\LIFT

Note that FCLRTS must be set for OS/2, but not for Windows. VisualLift for
Windows (VLW.EXE) must be started from the LAN directory. Specify
X:\LANLIFT as working directory for the program item (icon).

� VisualLifted applications may be installed on the server or on the client.
VisualLift RTE first tries to find a VisualLifted application on the client
workstation (using the FCLROOT environment variable) and second on the
server workstation (using the FCLROOTLAN environment variable).
If you start VisualLift for Windows from the LAN without an application name,
the window prompting for the application names only shows the names of those
applications residing on the LAN server. Nevertheless it also works if you enter
names of applications which are on the local drive.

 Chapter 3. VisualLift Concepts 19

 VisualLift and LAN

� If VisualLift for OS/2 and VisualLift for Windows are both installed on one LAN
server, the directories can reside on the same drive but must not be merged.
Both require a complete directory structure and separate copies of the
application files.

LAN Installation (Server)
The installation of VisualLift on a LAN server is described in Chapter 4,
“Installation” on page 23.

LAN Installation (Client)
To enable a client workstation to use VisualLift from a LAN server, perform the
following steps:

� Create a copy of the fclroot \FCL directory tree containing the following
sub-directories:

 \FCL\ASDATA

 \FCL\NLSDATA\ENGLISH

 \FCL\TMP

If application development is performed on the local workstation, the following
sub-directories must also be contained:

 \FCL\USEREXIT

 \FCL\HOSTSCAN

 \FCL\PWSTEXT

 \FCL\PROJECTS

� Update CONFIG.SYS (for Windows AUTOEXEC.BAT) with the following entries:

 SET FCLROOT=D:\LIFT

 SET FCLROOTLAN=X:\LANLIFT

 for OS/2:
 SET FCLRTS=X:\LANLIFT

add X:\LANLIFT\RTS\DLL to the LIBPATH statement
add X:\LANLIFT\RTS\BIN to the PATH statement
add X:\LANLIFT\RTS\HLP to the DPATH statement

 add X:\LANLIFT\RTS\HLP, X:\LANLIFT\FCL\NLSDATA\ENGLISH, and
D:\LIFT\NLSDATA\ENGLISH to the HELP statement

If you are performing application development, also update CONFIG.SYS (for
Windows AUTOEXEC.BAT) with the following entries:

 for OS/2:
 SET FCLADS=X:\LANLIFT

add X:\LANLIFT\ADS\DLL to the LIBPATH statement
add X:\LANLIFT\ADS\BIN to the PATH statement
add X:\LANLIFT\ADS\HLP to the DPATH statement

Also add X:\LANLIFT\FCL\USEREXIT to the LIB and INCLUDE statement.

Optionally you can use the environment variables described at “Environment
Variables” on page 101.

20 VisualLift User's Guide

 National Language Support

 Host Connection
Even when the client workstation is connected to a LAN, it still needs a host
connection - either via the LAN or via an adapter card installed in the client
workstation.

National Language Support
VisualLift is available in English, only. However VisualLift OS/2 is enabled to
provide national language support for VisualLifted applications for single- and
double-byte character languages. Even if the host application is available, for
example in English only, the VisualLifted user interface can be translated into any
single- or double-byte character language.

The solution: when the VisualLift user interface is developed, the NLS part of the
user interface is stored in separate text files. These text files can be translated.
The window layout of the VisualLifted application adapts automatically to the
translated text.

The NLS support is enabled for windows, controls, and helps. This means, that the
text files for windows, controls, and helps may be translated. At run-time the
VisualLift windows dynamically accommodate the text lengths and the appropriate
controls are displayed.

VisualLift Windows RTE supports single-byte character languages.

 Chapter 3. VisualLift Concepts 21

 Adding Your Own Functions

Adding Your Own Functions to VisualLift
The set of functions offered by the RTE can be extended by writing application
provided routines. VisualLift provides exits to include the application provided
routines. This enables for:

� Extensive input validation on the workstation
� Integration of other, workstation based, applications
� Access to and modification of the 3270 data stream
� Dynamic exchange of help information
� Integration of user defined controls, for example business graphics.

How to write application provided routines is described in the VisualLift Reference.
The following samples of application provided routines are available:

 � Checking routines
 � Mapping routines
 � Action routines
� Help exit routines
� Window procedures for private controls
� Panel identification exit routines.

For more information concerning application provided routines refer to “Supplying
Application Provided Routines” on page 67. Samples of application provided
routines are available in C-source code in the file SAMPLE.C in directory
fclroot\FCL\USEREXIT.

22 VisualLift User's Guide

 Installation

 Chapter 4. Installation

VisualLift runs under OS/2 and Windows and is delivered on:

� Tapes for MVS to download VisualLift from MVS
� Tapes for VSE to download VisualLift from VSE
� Tapes for VM to download VisualLift from VM
� Diskettes to install VisualLift directly on the workstation.

The procedures to install VisualLift on the host (MVS,VSE, or VM) are described in
the following manuals:

� VisualLift Program Directory for MVS
� VisualLift Program Directory for VSE
� VisualLift Program Directory for VM.

VisualLift Run-Time Environment (RTE) for OS/2 and VisualLift Run-Time
Environment (RTE) for Windows are part of OS/390. To install VisualLift RTE, you
have to download it from the host where you installed OS/390.

Host Installation Process
The VisualLift host installation process consists of two steps:

1. Read the installation description file FCLREADM on the host. The installation
description of VisualLift is available

� for MVS: as a member in the partitioned data set
'SYS1.SFCLINST.SFCLINST(FCLREADM)'

� for VSE: as member FCLREADM W in PRD2.PWS

� For VM: as FCLREADM DES *

To read the installation description file, download it to your workstation in binary
format.

2. Perform the down-load of VisualLift from the host to the workstation. Follow
the instructions in the FCLREADM file.

Diskette Installation Process
Read the installation description file A:\FCLREADM.TXT on Diskette 1 and follow the
instructions.

Hard Disk Space
To install VisualLift ADE and RTE on your workstation approximately 10MB
(including 4MB temporary for installation) of disk space are needed.

To install VisualLift RTE (either OS/2 or Windows) on your workstation
approximately 6MB (including 2MB temporary for installation) of disk space are
needed.

 Copyright IBM Corp. 1995, 1996 23

 Installation

 System Requirements
Before you start the installation procedure, make sure that the workstation where
VisualLift is to be installed fulfills the system requirements as described in
Appendix A, “System Requirements” on page 97.

Different Levels of VisualLift
This section is only applicable if you already installed VisualLift (either VisualLift
RTE or VisualLift ADE) on your workstation or on a LAN. Typical situations are:

� You already developed VisualLifted applications on this workstation or on the
LAN - using VisualLift ADE.

� You are a user of VSE Workdesk.
If the VSE Workdesk (part of VSE/ESA 2.x) is already installed on the
workstation where you want to install VisualLift RTE, you must install the
VisualLift RTE in the same drive and path as the VSE Workdesk.

In general, the various versions of VisualLift are upward compatible. This means,
the most recent level of VisualLift supports the entire functionality of the previous
levels of VisualLift. Make sure that you replace an existing VisualLift only with a
more recent level of VisualLift.

Check Service Levels
You already used VisualLift RTE on the workstation or on the LAN. If you receive
another VisualLift RTE you have to know which level is the most recent one. To
check the service level of VisualLift RTE do the following:

� View the file FCL.DAT in the fclroot directory.
� View the service level information in the FCLREADM installation description file.
� View the information delivered with a VisualLifted application.

The higher number indicates the more recent level of VisualLift RTE. Use the most
recent level of VisualLift RTE.

24 VisualLift User's Guide

 Getting Started

 Chapter 5. Getting Started

After installing VisualLift the VisualLift folder resides on the desktop. The VisualLift
folder contains a set of objects which are described in this chapter. Double-click on
the VisualLift icon to open the folder.

 Object Hierarchy
The following figure shows the hierarchy of VisualLift objects. It is assumed that
the sample applications and the Solution Guide are installed.

Figure 10. Hierarchy of VisualLift Objects

 Copyright IBM Corp. 1995, 1996 25

 Getting Started

Simulated 3270 Session
The simulated 3270 session simulates a 'real' 3270 host session. It looks and
behaves similiar to a 3270 emulator window, but is only used within VisualLift for
demonstration purposes. The sample applications as well as the Solution Guide
use the simulated 3270 session to show the run-time behavior of VisualLift
applications. You must start it before you start one of the sample applications or
the Solution Guide.

The simulated 3270 session can also be used without the sample applications or
Solution Guide to simulate the flow through a sequence of different host screens.
The Sample Application README describes what you can do to initiate and
control this flow through the host screens.

Composer - VisualLift Sample Application
The composer application is one of the two applications provided by VisualLift to
show the run-time behavior of a VisualLifted application. Instead of running against
a 'real' host session the sample applications are running against the simulated 3270
session. They give examples of how host fields can be mapped to workstation
controls, and show all features provided by VisualLift such as events, online helps,
or application provided routines.

Print - VisualLift Sample Application
This is the second sample application provided by VisualLift. It can be performed
on its own or can be called by another application via application switch.

Sample Application README file
The sample application README file describes all possible interactions for using
the objects

� Simulated 3270 session
� Composer - VisualLift Sample Application
� Print - VisualLift Sample application

 VisualLift Workbench
The VisualLift Workbench is used to develop a VisualLift application. Chapter 6,
“Using VisualLift” on page 31 describes in detail the necessary steps to VisualLift a
host application. It also shows the purpose and use of the objects contained in the
workbench.

 Important

This chapter is highly recommended for novice users

26 VisualLift User's Guide

 Getting Started

VisualLift Online Solution Guide
The Online Solution Guide offers guidelines for the design of workstation windows,
and shows the usage of each workstation control for your reference.

The quality of a VisualLifted application depends on the design of its workstation
windows which decides about its usability and ease of use.

 Hint

The Solution Guide is the tool which helps you to find the corresponding
workstation control for a host field.

 Design Guidelines
The design guidelines help VisualLift users to design workstation windows which
take as much advantage of the workstation user interface as possible. The
following list provides recommendations concerning the design of workstation
windows.

� Study and analyze the host screen: what are the semantics of each
input/output field, what is the context of the host screen?

� Search for the most intuitive workstation control for the host input/output field.

� Is there a way to group several input/output fields into one workstation control?

� If more than one workstation control is eligible for the host input/output field,
choose the control which is intuitive for the user of the VisualLifted application.

� Identify each workstation control or group of controls with a prompt text, a
column heading, or a window title, whichever is most appropriate.

� Use a prompt text that clearly indicates the function of a workstation control.

� If VisualLift provides a workstation control that supplies the required function,
use that control rather than creating application provided routines.

 Chapter 5. Getting Started 27

 Getting Started

Accessing the Solution Guide
Make sure you have already started the simulated 3270 session.

1. Double-click on the Solution Guide icon

2. The VisualLift Solution Guide - Main selection window appears:

Figure 11. VisualLift Solution Guide - Main selection

Controls - Definitions and Examples

The left side of the window shows a column of controls.
Clicking on the Control push button to the left of a listed control results in a
window with the definition of the control and examples what it may look like. The
following window appears when you click on the Control push button to the left of
EntryField.

28 VisualLift User's Guide

 Getting Started

Figure 12. VisualLift Solution Guide - EntryField control

More controls... at the bottom of the Main selection window shows additional
controls. Clicking on any of the Control push buttons also shows the definition of
the selected control and shows an example what it may look like.

Mapping Modes - Information and Explanation

At the top of the Main selection window is a row of push buttons showing various
MAPPING modes. Clicking on any of the Mapping push buttons provides you with
information about the selected mapping mode.
Clicking on More mappings... at the bottom of the window shows additional
mapping related examples.

Controls and Mapping - Information and Explanation

Clicking on one of the buttons with an X shows you how a value on the workstation
window is mapped to the host panel by using a specific combination of a control
and one of the mapping modes. The following example is for EntryField and
Identical Mapping:

 Chapter 5. Getting Started 29

 Getting Started

Figure 13. VisualLift EntryField+ Identical Mapping

Host view shows parts of host situations and leads to the suggested workstation
solution.

Events explains in detail what an event is and shows examples for different types
of events.

More info - Information and Explanation

More info ... is given for controls and mapping modes.
More info... for controls provides:

� An explanation of the control and advice where to use it.
� Information which mapping mode can be used together with the selected

control.
� Information where the definition of the selected control can be found in the

VisualLift Online Reference.
� Information where the selected control is used in the sample application.
� A description how to define the selected control with the graphic editor.
� A description how to define the selected control using the textual approach.

More info... for mapping modes provides:

� An explanation of the selected mapping mode.
� A reference to the corresponding definition of the selected mapping mode in

the VisualLift Online Reference.
� Information where the selected mapping mode is used in the sample

application.
� A description how to define the selected mapping mode using the graphic

editor.
� A description how to define the selected mapping mode using the textual

representation.
� The name of the host screen object currently visible in the simulated 3270

session window.

30 VisualLift User's Guide

 Using VisualLift � VisualLift Tasks

 Chapter 6. Using VisualLift

This chapter describes how to VisualLift a host application. VisualLifting a host
application consists of several tasks. The tasks are shown in Figure 15 on
page 33.

You create a project named COMPOSER which becomes part of the VisualLift
Workbench and is used as a base for examples throughout this chapter.

It is recommended especially for novice users to perform all tasks to get a basic
understanding what VisualLifting is all about.

 Terminology
While working with VisualLift some expressions or terms may be new to you. For
example, the term application within VisualLift is the VisualLifted user interface for a
host application. Whenever an unknown term occurs, do one of the following:

� refer to “Glossary” on page 105
� use the index of either the VisualLift Help Facility or Reference or this user's

guide
� use the VisualLift Help Facility or Reference; also use the hypertext links

provided there.

 VisualLift Tasks
The VisualLift tasks described on the next pages provide you with a framework how
to VisualLift a host application. The principles of working with VisualLift as well as
some reductions for your work are provided.

Figure 15 on page 33 shows the sequence of tasks and gives a short overview
what happens within each task. For novice users the sequence of tasks is a must .

 Start
Within that section of the document you will receive exact guidance how to
proceed. Each task will be described in a structured way. For your orientation
each page identifies the task you are actually performing by a running heading at
the top of the page. Special emphasis is given to remarks, hints and
recommendations.

In the task section the following host screen is the model to create a VisualLifted
window.

 Copyright IBM Corp. 1995, 1996 31

 VisualLift Tasks

à ð

 SMPDATAP PRIVATE COMPOSER DATA

 Country Germany

Main types of compositions

 x Symphonies

 _ Concertos

 x Quartetts

Enter=Process 3=End 9=Exit

á ñ

Figure 14. The Host Screen Model to Create a VisualLifted Window

 Interaction Techniques
VisualLift's ADE runs on OS/2 and the interaction is object oriented. If you are not
familiar with these techniques, it is recommended to study these techniques either
by using the OS/2 tutorial or reading OS/2 documentation. To use VisualLift,
knowledge of the following concepts and interaction techniques is required:

 � Folder concept
 � Template concept
� The use of context menus for objects
� The use of context menus for folders
� Drag and drop techniques.

32 VisualLift User's Guide

 VisualLift Tasks

VisualLift Set-up

Create Project

Scan Host Screen

Design
PWS Window

Perform Mapping

Build Panel ID

Build Application

Set-up the host: navigate to the host
application to be VisualLifted, but do not start
the host application. Set-up VisualLift: within
the settings notebook enter the
characteristics of the VisualLift Workbench.

Create a project within the VisualLift
Workbench. Data belonging to that project
will be created and manipulated within that
project. Create one project for every host
application to be VisualLifted.

Each VisualLifted window has to be assigned
to a host screen. The VisualLifted window
has to be unique within an application (or
project). Therefore an identifier for each
window has to be created.

All VisualLifted windows are linked together
to build the VisualLifted application.
Additionally the invocation and termination
may be defined.

This is the most important step of
VisualLifting. The quality of the VisualLifted
user interface depends on the transformation
of host input/output fields into workstation
controls.

Navigate to the first screen of the host
application. Then create the host screen
object. The scanned host screen is the base
for VisualLift. View a scanned host screen by
a double-click on the icon.

Once the workstation control elements are
designed they have to be mapped to the
corresponding host input/output fields. This
task is to be performed for each individual
workstation control.

Task

Task

Task

Task

Task

Task

Task

0

1

2

3

4

5

6

G

T

G

T

Test
VisualLifted
Application

Distribute
VisualLifted
Application

Run
VisualLifted
Application

This is the first time a VisualLifted application
works in conjunction with the host
application. At that point the VisualLift RTE
starts to work.

Distribute the VisualLifted application and
copy it to a directory where it is accessed by
the VisualLift RTE. The distribution of the
VisualLifted application can be done via
diskettes, via LAN, or via the host.

Associate the VisualLift RTE object with the
VisualLifted application. Start the VisualLifted
application by a double-click on the
application icon.

Task

Task

Task

7

8

9
Figure 15. Tasks to VisualLift a Host Application

 Chapter 6. Using VisualLift 33

 Setting-up VisualLift - Task 0

Setting-up VisualLift - Task 0
It is assumed that the VisualLift installation is finished. VisualLift requires a defined
environment to work correctly. Perform the host environment set-up either for
MVS, VSE, VM or OS/390.

Setting-up Your Host Environment
Open one of your host sessions.

1. Log on to your User-ID
2. Go to the screen where you can start your host application, but do not invoke it

yet.

 Important

In this chapter the 3270 emulator simulation provided by VisualLift is used
instead of a 'real' host session.
If you are performing the tasks described in this chapter, setting-up your host
environment is equivalent to setting-up the emulator simulation.
Double-click on the simulated 3270 session icon in the VisualLift folder.

You have successfully established your working environment.

Setting-up Your VisualLift Environment
Start VisualLift.

1. Double-click on the VisualLift Workbench icon in the VisualLift folder

The VisualLift Workbench is located in the VisualLift folder on the desktop.

2. Click with mouse button 2 on the background of the VisualLift Workbench -
Contents folder

3. Select in the context menu Open as settings

34 VisualLift User's Guide

 Setting-up VisualLift - Task 0

The VisualLift Workbench - Settings notebook appears.

Enter the settings of VisualLift.

1. Enter the identifier of the Host session
2. Select the Editor tabbed section
3. Enter the name (including drive and path) of the text Editor you want to use
4. Select the Font tabbed section
5. Select the Font
6. Press the OK push button of the notebook

 Chapter 6. Using VisualLift 35

 Creating a Project - Task 1

Creating a Project - Task 1
Before you VisualLift an application you have to create a project. A project is the
area where the actual VisualLifting takes place.

The work during VisualLifting will take place in project folders. It is recommended
to maintain all data belonging to one VisualLifted application within one project
folder.

You can either define a project using the context menu or using drag and drop .

Define project (named: Composer) using the context menu.

1. Click with mouse button 2 on the background of the VisualLift Workbench -
Contents folder

2. Select in the context menu Create project
3. Enter Name and Comment (optional) in the Project - New window.
4. Click on the first check box for 3270 Emulator. This selection enables testing

of the VisualLifted window against the Simulated 3270 session of the VisualLift
Sample application. The second one has been selected by default.

5. Press the Ok push button in the window

6. Result: The Composer project is created

 Important

Select the first check box only when performing the following tasks, not when
you are lifting your own applications.
The second check box can stay selected. You can see the host session
simultaneously to the lifted application, and check their relationship while
testing.

Define project (named: Composer) via drag and drop.

1. Double-click on Template icon
2. Drag the Project icon in the Template folder and drop it over the VisualLift

Workbench - Contents folder
3. Enter Name and Comment (optional) in the Project - New dialog box
4. Press the OK push button in the window
5. Result: The Composer project is created

36 VisualLift User's Guide

 Creating a Project - Task 1

If you want to create other objects also using the templates, leave the Template
folder open.

The project Composer is created and visible in the VisualLift Workbench -
Contents window.

 Chapter 6. Using VisualLift 37

 Scanning a Host Screen - Task 2

Scanning a Host Screen - Task 2
Now you have to capture a host screen of a host application. This host screen
provides the base from which the workstation window is designed (see “Designing
a PWS Window - Task 3” on page 40). Navigate to the screen to be captured in
your host session, the simulated 3270 session in this case.

Enter in the Simulated 3270 session:

1. composer and press Enter

2. Enter 3 in the Specify desired option field and press Enter

3. Enter 2 in one of the Option fields and press Enter

4. Result: you get the Private Composer Data host panel displayed

This panel is scanned in this task and is the base of the VisualLifted window which
will be created within the following tasks.

à ð

 SMPDATAP PRIVATE COMPOSER DATA

 Country Germany

Main types of compositions

 x Symphonies

 _ Concertos

 x Quartets

Enter=Process 3=End 9=Exit

á ñ

Figure 16. The Host Screen Model to Create a PWS Window

Open the Composer project by double-clicking on the Composer icon. You can
either scan a host screen using the context menu or using drag and drop.

Scan host screens using context menus.

1. Click with mouse button 2 on the background of the Composer - Contents
folder

2. Select in the context menu Create object
3. Select in the cascaded menu Host Screen
4. Enter Name and Session in the Host Screen - Create window
5. Press the Create push button in the window

6. Result: The Host Screen object is created

38 VisualLift User's Guide

 Scanning a Host Screen - Task 2

Scan host screens using drag and drop.

1. Drag the HostScreen icon of the Template folder and drop it over the
Composer - Contents folder

2. Enter Name and Session in the Host Screen - Create window
3. Press the Create push button in the window
4. Result: The host screen object is created

The host screen SMPDATAP is created and visible in the Composer - Contents
folder.

Double-click with mouse button 1 on the host screen SMPDATAP in the
COMPOSER project. The host screen is then always visible while you are defining
the workstation window.

By selecting the fields you can see the field structure of the host screen. The
status line at the bottom of the screen shows you the attributes of the field where
the mouse pointer is currently located.

You may now close the Simulated 3270 session.

 Chapter 6. Using VisualLift 39

 Designing a PWS Window - Task 3

Designing a PWS Window - Task 3
Note: This task is the most important one! It decides about the quality of the
graphical user interface you are creating for a host application. Working through
the online VisualLift Solution Guide before you start designing PWS windows for
your own applications provides you with the necessary guidelines and helps.

For the scanned host screen SMPDATAP the corresponding PWS Window has to be
designed. This task has the following sub-tasks:

� Creating a PWS Window
� Defining controls in graphical mode
� Defining controls in textual mode
� Transforming graphical representation into textual representation and vice

versa.

 Important

The Host Screen, PWS Window, and PWS Window (Text) objects must have
identical names to indicate that these objects belong together. You can
distinguish them by their representation, the icon.

Creating a PWS Window
Create a PWS Window using context menus.

1. Click with mouse button 2 on the background of the COMPOSER - Contents
folder

2. Select in the context menu Create object
3. Select in the cascaded menu PWS Window
4. Enter Name (SMPDATAP) in the PWS Window - Create window
5. Press the Create push button window

6. Result: The PWS Window is created

Create a PWS Window using drag and drop.

1. Drag the PWS Window icon of the Template folder and drop it over the
COMPOSER - Contents folder

2. Enter Name (SMPDATAP) in the PWS Window - Create window
3. Press the Create push button in the window
4. Result: The PWS Window is created

40 VisualLift User's Guide

 Designing a PWS Window - Task 3

The created PWS Window object appears in the COMPOSER - Contents folder.

Defining Controls in Graphical Mode
Define the workstation controls for the PWS Window SMPDATAP. This step is the
important one. Take your time to figure out how the host input/output fields should
be converted into workstation controls. For more information see the online
VisualLift Solution Guide.

The following workstation controls will build up the PWS Window:

 � one window

� one entry field for the country name

� one group box to contain the type of compositions

� three check boxes within the group box (one check box for each type of
compositions)

� three push buttons for the three attention keys mentioned on the host screens.

The created PWS Window is empty. Create the workstation controls for the PWS
Window.

1. Double-click with mouse button 1 on the PWS Window SMPDATAP in the
COMPOSER project

2. Result: The graphic editor appears

 Chapter 6. Using VisualLift 41

 Designing a PWS Window - Task 3

Double-click into an empty space of SMPDATAP window.

1. Enter Composer - Private Data in the Window title text field
2. Press Ok push button

3. Result: The window title is defined.
4. Click on the S at the left of the window title to save the window.

 Tip

Saving the PWS window after each modification allows you to see it in its latest
state using the Play option. See the context menu of the PWS window object
SMPDATAP in the Composer - Contents folder for the Play option.

Define now the Entry field control.

1. Search in the Template window of the graphic editor for the control Entry Field
2. Drag the Entry Field icon and drop it over the Composer - Private Data

window.

If you want to delete a control out of your window, drag it to the shredder.

3. Result: Entry Field appears in the Composer - Private Data window
4. Click on the S at the left of the window title to save the window.
5. Double-click on the Entry Field in the Composer - Private Data Window

42 VisualLift User's Guide

 Designing a PWS Window - Task 3

6. Result: The Entryfield - Attributes notebook appears
7. Enter Country in the Prompt text field
8. Change Width to 8
9. Press OK push button

10. Result: The entry field attributes are defined.

The entry field is defined and appears in the graphic editor. Click on the S at the
left of the window title to save the window.

 Tip

You can also drag the text for input fields from scanned host screens and drop
it over the prompt text field of the notebook. This technique eliminates typing
errors. See the description on page 44 how to do this.

 Chapter 6. Using VisualLift 43

 Designing a PWS Window - Task 3

Define now the group box control.

1. Search in the Template for the control Static (GroupBox)
2. Drag the Static (GroupBox) icon and drop it over the Composer - Private Data

window below the Country entry field

3. Result: Static (GroupBox) appears in the Composer - Private Data window
4. Double-click on the Static (GroupBox) in the Composer - Private Data Window

5. Result: The Group -Attributes notebook appears
6. Go to the SMPDATAP host screen and click with mouse button 1 on the Main

type of compositions string. The field changes its selection state and becomes
grey.

7. Drag the selected field and drop it over the Prompt text field
8. Press OK push button

9. Result: The text of the group box is defined
10. Click on the S at the left of the window title to save the window.

The group box is defined and appears in the graphic editor.

44 VisualLift User's Guide

 Designing a PWS Window - Task 3

Define now the check box control.

1. Search in the Template window of the graphic editor for the control Check Box
2. Drag the Check Box icon and drop it over the Main type of compositions group

box

3. Result: Check Box appears in the Main types of compositions group box
4. Double-click on the Check Box in the Main type of compositions group box

5. Result: The Check Box - Attributes notebook appears
6. Enter Symphonies in the Prompt text field
7. Press OK push button

8. Result: The check box is now defined

The check box is defined and appears in the graphic editor. Click on the S at the
left of the window title to save the window.

You can now repeat these steps to define the missing two check boxes, or you can
define them in textual mode as described on page 48.

 Chapter 6. Using VisualLift 45

 Designing a PWS Window - Task 3

Define now the push button control.

1. Search in the Template window of the graphic editor for the control
PushButton (Bottom)

2. Drag the PushButton (Bottom) icon and drop it over the Composer - Private
Data window

3. Result: Push Button appears in the Composer - Private Data group box
4. Double-click on the PushButton (Bottom) in the Composer - Private Data

group box

5. Result: The Pushbutton (Bottom) - Attributes notebook appears
6. Enter OK in the Prompt text field
7. Select Horizontal to achieve the same width for all push buttons
8. Press OK push button

9. Result: The push button is now defined

The push button is defined and appears in the graphic editor.
Click on the S at the left of the window title to save the window.

46 VisualLift User's Guide

 Designing a PWS Window - Task 3

You can now repeat these steps to define the missing two push buttons, or you can
define them in textual mode as described on page 48.

Transforming Graphical into Textual Representation
Up to now you created the main elements of a PWS Window. If you have not
defined them using the graphic editor, there are two check boxes and two push
buttons missing - they will be created in textual mode within the next step.

Within this step you will again save the created PWS Window, transform it into
textual representation and define the missing controls in textual mode.“Graphical
and Textual Mode” on page 9 gives an overview of textual mode and graphical
mode and provides hints when to use which mode.

File the created controls and the window within the graphic editor.

1. Select the menu item PWS Window
2. Select the pull down File
3. Minimize the graphic editor

4. Result: The updates that you have made to PWS Window (SPMDATAP)
within the graphic editor are saved to disk.

 Be aware

Always use the File action before switching to textual mode. This ensures that
textual changes are visible when you invoke the graphic editor next time.

Create now a PWS Window (Text) object from the PWS Window object SMPDATAP.
This process is called transformation. For more information refer to
“Transformation” on page 82.

Create PWS Window (Text) SMPDATAP.

1. Click with mouse button 2 on the PWS Window SMPDATAP
2. Select in the context menu Build Text
3. Result: The PWS Window (Text) SMPDATAP is created.

The created PWS Window (Text) SMPDATAP appears in the COMPOSER -
Contents folder.

 Chapter 6. Using VisualLift 47

 Designing a PWS Window - Task 3

Defining Controls in Textual Mode
The missing check boxes and push buttons can be defined in textual mode.

Create controls in textual mode.

1. Double-click on PWS Window (Text) SMPDATAP

Result: The text editor that you defined in the workbench settings is used to
edit the textual representation of the controls.

The text elements which make up a Check Box control look like the following:

 <ELEMENT> "CB_1"

 General:

 VarName = Var_CB_1

 ValueType = Boolean

 SetView:

 CheckBox (

 Text = "Symphonies")

Figure 17. Textual representation of check box 'Symphonies'

The text elements which make up a Push Button control look like the following:

<ALT> "FKA_1"

 General:

 Value = "FKA_1"

 SetView:

 PushButton (

 Expand =Horizontal

 Text = "OK")

Figure 18. Textual representation of push button 'OK'

Note: The SetView section contains the parameters defined in the
presentation part of the Attribute notebooks, whereas the General section
contains the parameters defined in the general part.

2. Copy the CheckBox and the PushButton definition two times and place them
below the original definitions.

Note that for the added check boxes not only the text Symphonies must be
changed to Concertos and Quartetts respectively, but also VarName must be
changed to Var_CB_2 and Var_CB_3 respectively. Change the two added
ELEMENT names CB_1 to CB_2 and CB_3 respectively. Also for the added
push buttons not only the text OK must be changed to Cancel and Exit
respectively, but also the added occurrences of FKA_1 must be changed to
FKA_2 and FKA_3 respectively. Furthermore, ActionType=Cancel must be
added for Cancel and Exit.

In addition, references to the new controls must be added to the layout
parameter at the top of the file:

48 VisualLift User's Guide

 Designing a PWS Window - Task 3

 � Ref= "CB_2"
 � Ref= "CB_3"
 � Ref= "FKA_2"
 � Ref= "FKA_3"
See Figure 19 for all changes.

 3.
 Be aware

Save the PWS Window (Text) SMPDATA and close the text editor before
switching to graphical mode.

4. Result: The PWS Window (Text) SMPDATAP is updated with the additional
controls

 Hint

The tags to define a PWS Window (Text) on a textual base are listed in the
online VisualLift Reference. Other examples of PWS Window (Text) objects are
available in the SAMPLES project folder.

 Chapter 6. Using VisualLift 49

 Designing a PWS Window - Task 3

 <SET> "SMPDATAP"

 SetView:

 Window (

Text = "Composer - Private Data")

 Layout (

Ref = "EF_1"

 Group (

 RefBox = "GRP_1"

 Expand = None)

Ref = "CB_1"

Ref = "CB_2" <------------------------/ references to new

Ref = "CB_3" <------------------------/ controls are added

 EGroup

Ref = "FKA_1"

Ref = "FKA_2" <------------------------/ references to new

Ref = "FKA_3") <------------------------/ controls are added

 <ELEMENT> "EF_1"

 General:

 VarName = Var_EF_1

 ValueLength = 2ð

 SetView:

 EntryField (

 Text = "Country"

 Width = 8)

 <SET> "GRP_1"

 SetView:

 Static (

Text = "Main type of compositions"

 Type = GroupBox)

 <ELEMENT> "CB_1"

 General:

 VarName = Var_CB_1

 ValueType = Boolean

 SetView:

 CheckBox (

 Text = "Symphonies")

/\\/

<ELEMENT> "CB_2" / Copied and then /

 General: / modified /

VarName = Var_CB_2 / The checkbox 2 is /

ValueType = Boolean / available within the /

 SetView: / Groupbox /

 CheckBox (

 Text = "Concertos")

/\\/

<ELEMENT> "CB_3" / Copied and then /

 General: / modified /

VarName = Var_CB_3 / The checkbox 3 is /

ValueType = Boolean / available within the /

 SetView: / Groupbox /

 CheckBox (

 Text = "Quartetts")

Figure 19 (Part 1 of 2). Textual Representation of the Composer - Private Data Window

50 VisualLift User's Guide

 Designing a PWS Window - Task 3

/\\/

 <ESET>

 <SELECT> "S_FKA_1"

 General:

 VarName = Var_S_FKA_1

 ValueLength = 5

 <ALT> "FKA_1"

 General:

 Value = "FKA_1"

 SetView:

 PushButton (

 Text = "OK")

/\\/

<ALT> "FKA_2" / Copied and then /

 General: / modified /

 Value = "FKA_2"

 SetView:

 PushButton (

ActionType = Cancel /Note that ActionType /

Expand = Horizontal /Cancel must be inserted/

 Text = "Cancel")

<ALT> "FKA_3" / Copied and then /

 General: / modified /

 Value = "FKA_3"

 SetView:

 PushButton (

ActionType = Cancel / Note that ActionType /

Expand = Horizontal / Cancel must be inserted/

 Text = "Exit")

/\\/

 <ESELECT>

 <ESET>

Figure 19 (Part 2 of 2). Textual Representation of the Composer - Private Data Window

Build PWS Window SMPDATAP.

1. Click with mouse button 2 on the PWS Window (Text) SMPDATAP
2. Select in the context menu Build PWS Window
3. Result: The PWS Window SMPDATAP is updated.

 Hint

VisualLift provides syntax and semantic checks when transforming a PWS
Window(Text) to a PWS Window.
When saving a PWS Window in the graphic editor a semantic check is also
performed.
Only one error is reported at a time. Correcting the error and repeating the
save action or build PWS Window can detect more errors.

The PWS Window (Text) and the PWS Window SMPDATAP have now identical
contents.

 Chapter 6. Using VisualLift 51

 Designing a PWS Window - Task 3

View the modified PWS Window SMPDATAP.

1. Click with mouse button 2 on the PWS Window SMPDATAP
2. Select in the context menu Play

3. Result: The PWS Window SMPDATAP is displayed

The PWS Window (Text) and PWS Window SMPDATAP which were updated in
textual mode are now available with identical contents in textual and graphical
mode.

52 VisualLift User's Guide

 Performing Mapping - Task 4

Performing Mapping - Task 4
Up to now you have defined the attributes of a PWS Window. Now you have to
map the elements of the PWS Window with the fields of the host screen. Mapping
ensures that the information received and sent to and from the host application is
handled by the corresponding workstation control.

Open the graphic editor.

1. Double-click with mouse button 1 on the PWS Window SMPDATAP object
Result: The graphic editor appears

Perform mapping between Host and PWS Window.

1. Go to the SMPDATAP host screen
2. Double-click with mouse button 1 on the background of the Composer - Private

Data window within the graphic editor
3. Result: The Window - Attributes notebook appears. Click-on the tab Mapping
4. Select host screen field at position 1842. Whenever a text appears in position

1842 on the host, this text is displayed in a message box on the workstation.
5. Click with mouse button 2 on field 1842
6. Select Set text mapping on the context menu. The field changes its selection

state, becomes blue and is thus marked as mappable
7. Drag the field 1842 and drop it over the blue mapping area in the Window -

Attributes notebook

1842 appears in the Message field position
Alternative: directly type in the position

Whenever a value appears in the host field, this value will appear in a separate
message box

8. Click-on the tab MapKeySeq.
9. Select the PF9 from the Function Key list box.

This function key is to be sent to the host if the PWS Window is closed
using the system menu

10. Select the OK push button
11. Select host screen field at position 1842

 Chapter 6. Using VisualLift 53

 Performing Mapping - Task 4

12. Click with mouse button 2 on field 1842
13. Select Reset text mapping on the context menu to unmark this protected field

as mappable
14. Result: The Host-PWS mapping for Composer - Private Data window itself is

complete.
15. Click on the S at the left of the window title to save the window.

Map host input field to PWS entry field.

1. Double-click with mouse button 1 on the country entry field of the Composer -
Private Data window within the graphic editor

2. Result: The Entryfield - Attributes notebook appears. Click-on the tab
Mapping

3. Select the input field for country at position 437
4. Click with mouse button 2 on the country input field
5. Drag the country input field and drop it over the blue mapping area in the

Entryfield - Attributes notebook

Position and length of the host field will appear in the Position - Length list
Alternative: directly type in the position and length

6. Go to General and change Max. valuelength to 20 as the host field is 20
characters long

7. Select the OK push button
8. Result: The Host-PWS mapping for country entry field is complete.
9. Click on the S at the left of the window title to save the window.

 Hint

To find out which controls are already mapped use the Show Host-PWS
mapping status action within the graphic editor. The controls already mapped
are highlighted. This action is especially useful when a window contains more
than ten controls or when interrupting the Perform Mapping task.

54 VisualLift User's Guide

 Performing Mapping - Task 4

Map host input fields to PWS check boxes.

1. Double-click with mouse button 1 on the symphonies check box of the
Composer - Private Data window within the graphic editor

2. Result: The Checkbox - Attributes notebook appears. Click-on the tab
Mapping

3. Select on the host screen the input field for symphonies at position 757
4. Click with mouse button 2 on the symphonies input field
5. Drag the symphonies input field and drop it over the blue mapping area in the

Checkbox - Attributes notebook

Position and length of the host field will appear in the Position - Length list
Alternative: directly type in the position and length

6. Enter an _ in Value for unchecked state
7. Enter an x in Value for checked state
8. Select the OK push button
9. Result: The Host-PWS mapping for symphonies check box is complete.

Repeat this step for the concertos and quartets check boxes using the input fields
at positions 827 and 917. Click on the S at the left of the window title to save the
window.

Map host function keys to PWS push buttons.

1. Double-click with mouse button 1 on the OK push button of the Composer -
Private Data window within the graphic editor

2. Result: The Pushbutton (Bottom) - Attributes notebook appears
3. Click-on the tab Mapping
4. Select Enter from the Function Key list box

 Chapter 6. Using VisualLift 55

 Performing Mapping - Task 4

5. Select the OK push button
6. Result: The Host-PWS mapping for the OK push button is complete

Repeat this step for the Cancel and Exit push buttons selecting PF3 for Cancel and
PF9 for Exit from the Function Key list box.

File the modifications of the window within the graphic editor.

1. Select the menu item PWS Window
2. Select the pull down File
3. Minimize the graphic editor
4. Result: The modified PWS Window (SPMDATAP) is saved to disk.

Rebuild the PWS Window (Text) SMPDATAP.

1. Click with mouse button 2 on the PWS Window SMPDATAP
2. Select in the context menu Build Text .

 Important

Keep in mind to always synchronize PWS Window and PWS Window (Text).

View the PWS Window (Text) SMPDATAP and search for the 3270Map sections.
These sections contain the mapping information and have been created within this
task. Like in “Designing a PWS Window - Task 3” on page 40 you could perform
the mapping task in text mode, too.

In this case you can get the mapping information (e.g. position and length of
controls) from the status line at the bottom of the scanned host screen.

 Hint

Usually the more experienced user can combine Task 3 and Task 4.

56 VisualLift User's Guide

 Building a Panel ID - Task 5

Building a Panel ID - Task 5
For the PWS Window SMPDATAP a Panel ID has to be assigned. This Panel ID
assigns the PWS Window to the host screen at run-time.

 Hint

In some cases it is necessary to extend or modify the Panel ID algorithm that is
provided with VisualLift. Examples for such cases are:

� The length of a host field changes dynamically at run-time
� Host fields are created or removed at run-time
� Two different host screens have an identical structure with respect to

number of fields, field positions, and field length

See “Panel Identification Process” on page 14 for detailed information.

Build panel ID.

1. Click with mouse button 2 on PWS Window SMPDATAP
2. Select in the context menu Insert panel ID

3. Result: The SMPDATAP - Insert Panel ID dialog box appears
4. Use all fields is preselected
5. Press the Set push button in the SMPDATAP - Insert Panel ID dialog box
6. Result: The PWS Window icon is updated
7. The PWS Window icon is visualized in two modes:

PWS Window without panel ID.
PWS Window with panel ID.

The PWS Window SMPDATAP is now ready to be included into the application.

Update PWS Window (Text) SMPDATAP

1. Click with mouse button 2 on the PWS Window SMPDATAP
2. Select in the context menu Build Text
3. Result: The PWS Window (Text) SMPDATAP is updated.

 Be aware

View the PWS Window (Text) object SMPDATAP. The Panel ID is visible
within the PWS Window (Text). Whenever you build or modify the panel ID,
build the PWS Window (Text) object. Otherwise the panel ID will be lost if you
modify the PWS Window (Text) object, and build the PWS Window object from
that changed textual format.

 Chapter 6. Using VisualLift 57

 Building an Application - Task 6

Building an Application - Task 6
You finished successfully the various tasks necessary to VisualLift windows. Now
the created window SMPDATAP will be incorporated into an application called
MYAPPL.

Create an application object using the context menu and templates.

1. Click with mouse button 2 on the background of the COMPOSER - Contents
window

2. Select in the context menu Create object
3. Select in the cascaded menu Application

4. Result: The Application - Create notebook appears

Perform the following steps in the PWS Windows section of the notebook.

1. Enter the Application Name (MYAPPL)
2. Enter (optional) a Comment (My application)
3. Select window SMPDATAP in the Available list

If SMPDATAP is missing in the Available list check whether you assigned the
Panel ID.

4. Press the Add push button
5. Result: SMPDATAP shows up in the Included list

 Hint

If a PWS window object is missing in the Available list, you forgot to assign a
Panel ID for the PWS window object. Also only these windows are shown
which are part of the worked on project.

Click-on the tab Invocation . Perform the following steps in the Invocation section
of the notebook.

58 VisualLift User's Guide

 Building an Application - Task 6

1. Enter the Command (composer) which starts the host application.
2. Enter the Position (1761) of the command on the host screen.

 Hint

In order to define application invocation, init condition, and end condition,
you need to know field positions in the host screens from which the
application starts and on which it ends. Scan the host screens as described
in Task 2 to determine these positions.
The positions used here can be found in host screen object SMPVM in the
SAMPLES project.

3. Select the Function Key (Enter) from the Function Key drop-down list. This
function key will be entered when the application is started.

4. Select the System (CMS) where the host application resides from the System
drop-down list

Note: You can invoke an application without passing a command or a function
key. When defining an application, it is allowed to specify None for the function
key and to omit the command.

When the application is invoked, the RTE neither issues a command nor
passes a function key to the host, but just starts processing by trying to identify
a host screen. This allows to start an application when one of the screens of
that application is currently displayed at the host.

5. Click-on the tab Init Condition .

The entries in the Init condition section are optional. The init conditions specify a
set of strings that should be checked on the current host screen before the
application is started. This is used to ensure that the host is in the expected state
and is able to start the application. All init conditions specified must be fulfilled
before the host application is started. Otherwise the invocation of the VisualLifted
application will be rejected.

 Chapter 6. Using VisualLift 59

 Building an Application - Task 6

Perform the following steps in the Init Condition section of the notebook.

1. Press the Add push button
2. Press the Alt-key and click with mouse button 1 on the String field
3. Enter the String (RUNNING) to be checked before the VisualLifted application

is started
4. Press the Alt-key and click with mouse button 1 on the Pos field
5. Enter the Position (1901) of the string on the host screen
6. Press the Alt-key and click with mouse button 1 on the Match field
7. Enter a +

+ means that the Init Condition is fulfilled if the specified string is found at the
host position.
- means that the Init Condition is fulfilled if the specified string is not found at
the host position

8. Press the Alt-key and click with mouse button 1 on the Case field
9. Enter a +

+ means that the string is checked for case sensitivity
- means that the string is not checked for case sensitivity

Click-on the tab End Condition .

The End Conditions specify a set of strings that should be checked on the current
host screen to identify the termination of the application. If a host screen could not
be assigned to a PWS Window running the VisualLifted application, it is checked
for the End Conditions. If all End Conditions that are defined in this section are
fulfilled, then the VisualLifted application ends. At least one End Condition should
be specified. Perform the following steps in the End Condition section of the
notebook.

60 VisualLift User's Guide

 Building an Application - Task 6

1. Press the Add push button
2. Press the Alt-key and click with mouse button 1 on the String field
3. Enter the String (RUNNING) of the host screen when the VisualLifted

application returns control to the host system
4. Press the Alt-key and click with mouse button 1 on the Pos field
5. Enter the Position (1901) of the string on the host screen
6. Press the Alt-key and click with mouse button 1 on the Match field
7. Enter a +

+ means that the End Condition is fulfilled if the specified string is found at the
host position.
- means that the End condition is fulfilled if the specified string is not found at
the host position.

8. Press the Alt-key and click with mouse button 1 on the Case field
9. Enter a +

+ means that the string is checked for case sensitivity
- means that the string is not checked for case sensitivity

See “Application Invocation” on page 12 and “Run-time Processing Sequence” on
page 12 for additional background information.

Click-on the tab User Exit .

The settings in this section define the panel identification exit routine of the
VisualLifted application. The specification of a panel identification exit routine is
optional. For more information refer to “Supplying Application Provided Routines”
on page 67.

 Chapter 6. Using VisualLift 61

 Building an Application - Task 6

Leave the DLL and Procedure entry fields empty.

Press the Create push button

Result: The VisualLifted Application MYAPPL is created in the COMPOSER -
Contents folder.

The application is bundled - and ready for test.

The application is now VisualLifted. Within your COMPOSER project you will find
the application MYAPPL icon: it represents the entire VisualLifted application.

62 VisualLift User's Guide

 Testing a VisualLifted Application - Task 7

Testing a VisualLifted Application - Task 7
You have successfully created your VisualLifted application. Now it is time for
testing.

Prepare for Play.

1. Click with mouse button 2 on the application object within your project
2. Select in the context menu Play to initiate the Play sequence for all windows in

your application
3. Use push buttons or menu selections to switch to the next window or to cancel

the test: if you select a push-button or menu selection with an actiontype of
Cancel, the play option ends. Otherwise the next window will be displayed.

Now it is time to test the VisualLifted application MYAPPL with the Simulated 3270
session.

Prerequisite : Check whether in COMPOSER - Settings both check boxes for the
3270 EMULATOR are selected.

1. Make sure the Simulated 3270 Session has been started and that the initial
screen is displayed (the one showing 'RUNNING BOEVM3' at the bottom)

2. Click with mouse button 2 on the application object MYAPPL within your project
COMPOSER.

3. Select in the context menu Test
4. The MAIN SELECTION host panel appears with the text VisualLift-A:Screen

not recognized(myappl) in the emulator window title
5. Enter 3 for desired option
6. The LIST COMPOSERS host panel appears with the text VisualLift-A:Screen

not recognized(myappl) in the emulator window title
7. Enter 2 for OPTION
8. The VisualLifted Composer - Private data workstation window is displayed

together with the PRIVATE COMPOSER DATA host panel

End the test by pressing the Exit push button to exit the VisualLifted application.

During the test mode, all host screens that could not be assigned to a PWS window
or event have been captured and temporarily saved. After testing of the
VisualLifted application has ended and host screens could not be recognized, a
dialog box appears listing these host screen captures. For more information refer
to “Host Screen not recognized at run-time” on page 89.

If as a result of the test you have to modify one of your definitions, go back to
either the PWS Window or PWS Window (Text) and perform the change. Then do
the following:

� File the PWS Window (if you worked in graphical mode) and rebuild the PWS
Window (Text)

� Build the PWS Window (if you worked in textual mode)
� Click with mouse button 2 on the VisualLifted application and select Rebuild in

the context menu
Result: Your modifications are now incorporated into the VisualLifted
application

� Rerun the test.

 Chapter 6. Using VisualLift 63

 Distributing a VisualLifted application - Task 8

Distributing a VisualLifted Application - Task 8
The host application is VisualLifted and tested. Within your working environment
you can use the VisualLifted application. Now you want to provide the VisualLifted
application to other users. In general there are two things you have to do:

1. Install the run-time environment (RTE) of VisualLift on each user's workstation
2. Install the VisualLifted application to the workstation.

If you are working in a LAN environment, RTE may be installed on a LAN
server, and the VisualLifted application may also reside on the server and need
not be distributed to each user's workstation. See “VisualLift and LAN” on
page 19.

Installing the Run-Time Environment
Refer to Chapter 4, “Installation” on page 23 for detailed information on how to
install VisualLift.

Installing a VisualLifted Application
There are two ways to provide the VisualLifted application to other users:

� Via diskette or LAN
 � Via host.

Basically a VisualLifted application consists of the application file and the message
file that contains the separated text strings. Additional files can be associated with
a VisualLifted application. For more information on these files refer to “Files of a
VisualLifted Application” on page 99.

Use Export to copy all files belonging to an application from the workbench to
another drive or directory.

1. Click with mouse button 2 on your application object.
2. Select Export in the context menu.

3. Result: The Application - Export window appears.
4. Specify the required information and press the Export push button
5. Result: The application is exported to the specified target directory

64 VisualLift User's Guide

 Distributing a VisualLifted application - Task 8

When exporting an application, two command files are automatically generated
which allow installation of the exported application to a target workstation. The
extension for OS/2 is .CMD, for Windows .BAT. For example, the command files
for the MYAPPL application are MYAPPL.CMD and MYAPPL.BAT.

Distribution via Diskette or LAN
Run the command file to install a VisualLifted application on a particular workstation

1. Switch to the directory to which the application was exported. Issue, for
example, A: if it was exported to diskette, or, for example, X: and cd APPLS if
it was exported to the APPLS directory on the LAN server drive X.

2. Install the application by issuing, for example, MYAPPL
3. Result: The files are copied to the directories where they must reside to be

accessible by the RTE

Distribution via Host
After exporting the application, a host distribution could be performed this way:

1. Pack all exported files
2. Load the pack file to the host
3. Download the pack file to the user's workstation

 4. Unpack
5. Go to the directory where the unpacked files reside
6. Issue the install command, for example, MYAPPL
7. Result: The files are copied to the directories where they must reside to be

accessible by the RTE

 Chapter 6. Using VisualLift 65

 Running a VisualLifted Application - Task 9 � Optional Tasks

Running a VisualLifted Application - Task 9
To run a VisualLifted application a program object has to be created and a host
session has to be assigned.

This step describes how to run a VisualLifted application in an OS/2 environment.
To run a VisualLifted application in the Windows environment is described at “Start
a VisualLifted Application” on page 73.

Creating a Program Object
Create program object.

1. Double-click with mouse button 1 on the OS/2 System icon on the desktop
2. Double-click with mouse button 1 on the Templates folder on the desktop
3. Drag the Program template object and drop it over the Desktop

Result: The Program - Settings notebook appears

Define the settings of the VisualLifted application

� For Path and file name enter the following:
fclrts \RTS\BIN\FCLFUNC.EXE, where fclrts is the VisualLift root directory

� For Parameters enter the following:

applname x [Options]

where applname is the name of the application, e.g. MYAPPL,
where x is the session ID of the host session. Default is A.

See Appendix C, “Options for Running a VisualLifted Application” on page 103
for the options.

� Specify /FCL_EMULATOR=EMUTEST to make MYAPPL run against the
simulated 3270 session

� Click-on the tab General .
� Enter in the Title entry field the name of the object representing the

VisualLifted application
� Modify parameters in other sections of the notebook according to your needs
� Double-click with mouse button 1 on the System Menu of the Programs -

Settings notebook
Result: The VisualLifted application icon is on the desktop

Move the VisualLifted application icon to the desired area of the desktop

Double-click with mouse button 1 on the icon to start the VisualLifted application.

Congratulations

You successfully ran your host application with the new user interface you
designed.

 Optional Tasks
The previously described tasks are required to VisualLift a host application. The
optional tasks can enhance your VisualLifted application.

66 VisualLift User's Guide

 Optional Tasks

 Defining Events
Events allow you to describe conditions that are not covered by any data in the
description file of the currently running application. Examples for events can be:

� Messages from the operator that make the current screen disappear

� The currently running VisualLifted application is left (temporarily or permanently)
and another VisualLifted application is entered. The event file of the currently
running application is closed, and the event file of the target application is
opened.

� Messages must be translated, for example, to replace host specific terms with
workstation terms

There are two types of event files: the system event file and one event file per
application. To maintain system and application event files follow these steps:

� Click with mouse button 2 on the background of the VisualLift Workbench folder
(for the system event file)

� Click with mouse button 2 on the application object within your project folder
(for the application event file)

� Select the action Open event file from the context menu.

This action opens the text editor that is defined in the VisualLift Workbench
Settings. You now can edit the event file.

There are application event files for both sample applications in the SAMPLES
project.

Refer to the VisualLift Reference and the VisualLift Solution Guide to learn more
about the purpose of events, event handling, and the event definition syntax.

Supplying Application Provided Routines
VisualLift provides a variety of exits. You can supply your own routines (application
provided routines) using these exits. The different types of application provided
routines are:

� Panel ID exit routines to perform your private host panel identification, event
processing, and application end processing

� Mapping routines to perform your private mapping between host and
workstation values

� Checking routines to validate input values on the workstation without involving
the host application

� Action routines to integrate and communicate with other workstation based
applications

� Help exit routines to provide special help handling facilities
� Window procedures to integrate non-standard workstation controls, for example

business graphics.

Application provided routines have to be written in the C language. The code must
reside in a dynamic link library (DLL). The routines are made known to VisualLift by
specifying the DLL and procedure name of each exit.

The file SAMPLE.C in directory fclroot\FCL\USEREXIT contains samples for all types
of application provided routines.

 Chapter 6. Using VisualLift 67

 Optional Tasks

The following objects of the SAMPLES project show how the names of DLL and
PROCEDURE are defined.

� SMPCOMPO for an action routine and a mapping routine
� SMPADDCO for a checking routine
� SMPMAIN for a help exit routine
� SMPSTATS for a window procedure
� SMPAPPL and SMPPRTAP applications for panel ID exit routine

Panel ID exit routines are defined on the last page (User exit tab) in the Settings
notebook of an application object. See page 14 for more information about the
panel identification process.

Refer also to the VisualLift Reference to learn more about the different application
provided routines. There is also information available about the VisualLift provided
services that can be used within application provided routines. Use these services
to access and maintain values in host fields and workstation controls.

 Supplying Help
You can provide the following types of help for your VisualLifted application:

� General help, Keys help, and Using help for each PWS Window
� Context help for each control within a PWS Window.

A general help, keys help, or using help is displayed by the RTE whenever a push
button or menu choice in the window is selected which is defined with ActionType =
Help, ActionType = KeysHelp or ActionType = UsingHelp. The context help for the
control that currently has the input focus is displayed by the RTE whenever the F1
key is pressed. The OS/2 Information Presentation Facility (IPF) is called by the
RTE to manage the help display. In Windows, the appropriate Windows functions
are called. This enables you to use all the features, for example hypertext-links
that are available with the respective help manager. To enable help do the
following:

1. Specify the name of the help file containing all help texts within your window
definition. It is recommended to use the same help file for all windows of one
application.

2. Specify the numeric help ID for each help within your window definition. For
each help ID there must be the corresponding ID in the help file identifying the
help window that is displayed by the RTE.

3. Write the help source file:

a. For OS/2 the extension of help source files is IPF
Use the IPF Compiler (IPFC) to generate a help file (extension HLP) from
the source file. The IPF Compiler is part of the IBM OS/2 Developer's
Toolkit.

b. For Windows the extension of help source files is RTF
Use the Help Compiler (HC) to generate a help file (extension HLP) from
the source file. The Help Compiler is part of the Software Development Kit
(SDK) for Windows.

4. The help files must be stored in the language directory:
fclroot\FCL\NLSDATA\ENGLISH*.HLP

68 VisualLift User's Guide

 Optional Tasks

The file SAMPLE.IPF in directory fclroot\FCL\USEREXIT contains a sample help
source file.

The object SMPMAIN of the SAMPLES project shows how help is defined for a PWS
Window.

If you want to provide your application in multiple languages translate and process
your help file equivalent to the tasks that are described in section “Supporting
Multiple Languages.”

Supporting Multiple Languages
VisualLift enables you to translate the workstation interface into different languages.
This process is independent of the language of the host application interface and
can be performed without modifying the host application.

All text strings specified within a window definition are extracted by the VisualLift
ADE and stored into an NLS file. The separated text strings are subject of
translation into other languages. NLS files have the same name as the PWS
Window object and are stored in the NLS directory (with the extension NLS):
fclroot\FCL\NLSDATA*.NLS

The VisualLift ADE also generates a machine readable MSG file from the NLS file.
MSG files have the same name as the PWS Window object and are stored in the
language directory (with the extension MSG):
fclroot\FCL\NLSDATA\ENGLISH*.MSG

Once the NLS files have been translated into the new language, you must generate
a new MSG file using the MKMSGF utility. MKMSGF is part of the IBM OS/2
Developer's Toolkit.

The MSG files are processed unchanged also by the Windows RTE of VisualLift.

Rules for Translating NLS Files
Adhere to the following rules when translating the NLS files:

� The first line of the file contains an identifier. Do not translate this line.
� The second line starts with an identifier for the message number. Do not

translate the identifier, only the text following the identifier.
� Do not change the sequence of the strings.
� Do not delete or add lines.
� Each string must stand alone on one line.

 Chapter 6. Using VisualLift 69

 Translating VisualLift RTE Messages

Support Multiple Languages Concurrently
VisualLift allows to install VisualLifted applications in multiple languages on one
workstation. Take the case that your application is English and has to be
translated into French. Now you want to install both languages on one workstation.
To do so, you have to create a second language directory, for example:
fclroot\FCL\NLSDATA\FRENCH

*.MSG The English MSG files must reside in directory:
fclroot\FCL\NLSDATA\ENGLISH

*.MSG The French MSG files must reside in directory:
fclroot\FCL\NLSDATA\FRENCH

The language used by VisualLift is determined by the environment variable
FCLLANGUAGE. The value of the environment variable is the name of the language
directory.

SET FCLLANGUAGE=ENGLISH To use the English version of the VisualLifted
application specify the environment variable in the
CONFIG.SYS file.

SET FCLLANGUAGE=FRENCH To use the French version of the VisualLifted
application specify the environment variable in the
CONFIG.SYS file.

If FCLLANGUAGE is not set, ENGLISH will be used as default.

Translating VisualLift RTE Messages
Messages and texts issued by the VisualLift RTE will appear in English. This
information can be translated into another language. The file containing the
messages and text strings is named fclm9ðen.src and is located in the directory
fclroot\FCL\USEREXIT

The corresponding machine readable message file is named fclm9ðen.msg and is
located in the directory fclrts \RTS\MSG

After translating fclm9ðen.src into the new language, you must generate the new
message file using mkmsgf utility. mkmsgf is part of the IBM OS/2 Developer's
Toolkit. The rules to translate the src file are described in “Rules for Translating
NLS Files” on page 69.

The message file is processed unchanged also by the VisualLift Windows RTE.

70 VisualLift User's Guide

 VisualLift RTE for Windows

Chapter 7. VisualLift RTE for Windows

The RTE of VisualLift is available under Windows - VisualLift a host application with
the VisualLift ADE (under OS/2) and run the VisualLifted application either under
OS/2 or Windows. The installation of VisualLift RTE for Windows is described in
the installation description file FCLREADM on the host. For the system
requirements of a workstation using VisualLift RTE for Windows refer to
Appendix A, “System Requirements” on page 97.

Basically, the functions of the RTE of OS/2 and Windows are identical. But the
different approaches of the operating systems and user interface technology cause
deviations. The deviations to the OS/2 version of VisualLift RTE and special
features you need to be aware of are described in this chapter.

Deviations of VisualLift RTE for Windows
VisualLift RTE for Windows has deviations compared to VisualLift RTE for OS/2.
VisualLift RTE for Windows:

� Allows only one VisualLifted application to run at one time
� Does not support double-byte character set
� Allows no scrolling and re-sizing of VisualLifted windows.

Windows Considerations for VisualLift ADE
The following items have to be considered when you VisualLift a host application
that is to be used in the VisualLift Windows RTE.

 User Interface
The following user interface related items have to be considered when you
VisualLift a host application that is to be used in the VisualLift Windows RTE.

� Valueset and notebook cannot contain icon files
� Spin button and push buttons cannot be borderless
� Graphic controls are available for bitmaps (icon and metafile files are not

supported)
� Some restrictions for fonts and colors

The Windows considerations for each specific control are mentioned at the
corresponding control in Online Solution Guide as well as in the VisualLift
Reference.

Application Provided Routines
Application provided routines to be used by the Windows RTE require the use of
the Windows DLL format. The Software Development Kit (SDK) for Windows
provides tools to generate that format. VisualLift provides the members
FCLXUSER.LIB, FCLXWIN.H, and FCLXUSER.H in the directory fclroot \FCL\USEREXIT

This directory also contains four files with the file name FCLWSAMP (extension C,
MAK, DEF, LNK) which contain an example how to build a Windows DLL. As these

 Copyright IBM Corp. 1995, 1996 71

 VisualLift RTE for Windows

DLLs are produced by Windows, the Export function does not cover them. Also
.HLP and .WCO files are not covered by the Export function.

 Help Information
The help information for a VisualLifted application has to be created in the Windows
format. A word processor supporting the Rich Text Format (RTF) and tools of the
SDK for Windows are used to provide help information in Windows format.

Help for a VisualLifted application is requested by selecting the Help push button;
context-sensitive help (invoked by pressing F1) is not supported.

 Environment Variables
The VisualLift Windows RTE does not require that you set environment variables or
search paths in the AUTOEXEC.BAT file. Although it is not required, you can set all
environment variables of OS/2 (specified in CONFIG.SYS) in the AUTOEXEC.BAT file.

Rules for Setting Environment Variables
If FCLROOT= is not set, VisualLift defaults to the directory which is used as working
directory in the program item.
If FCLRTS= is not set, VisualLift defaults to the directory which is used as working
directory in the program item.

Increase Environment Space
If you set environment variables and the environment space is too small, you can
extend it by the following statement in the CONFIG.SYS file:

SHELL=C:\DOS\COMMAND.COM /e:512 /p

/e indicates the size of the environment space. Increase the number to
accommodate all SET statements.

 Minimize Icons
VisualLift Windows RTE supports the minimizing of VisualLifted windows to icons.
Consider the following:

� The minimized icon is specified by the parameter icon=
� The icon formats of OS/2 and Windows are not identical. The Windows icon

must be created with an appropriate Windows tool, for example the image
editor (IMAGEDIT.EXE) of the SDK. If you use WINOS2, try to copy the OS/2
icon into the clipboard and paste the icon in the Windows environment from the
clipboard to a file.

� The Windows icon must have 32 x 32 pixels containing 16 colors. A good
check for correctness is the file length: 766 bytes.

� To avoid confusion between OS/2 and Windows icons the Windows icons must
have the extension WCO (instead of ICO). In the textual representation,
however, the extension is ICO in order to allow identical application files.

72 VisualLift User's Guide

 VisualLift RTE for Windows

Graphic File Formats and Location
In general you can use your OS/2 2.0 (and higher) bitmap format unchanged
because the Windows 3.1 bitmap format is compatible.

There are two ways to check whether the bitmap file format is correct:

� Try to load the bitmap file into PAINTBRUSH (PBRUSH.EXE part of Windows) or
appropriate Windows tool

� Try to use the bitmap file as screen background.

The bitmap files (extension BMP) and the minimize icon files (extension WCO) must
be located in the directory fclrts \RTS\NLSDATA\ENGLISH

Space and Time Performance
The VisualLift RTE for Windows can use decompression routines to:

� Save disk space
� Speed up the performance

when using a VisualLifted application.

Each VisualLifted application is a file in the format filename.AST. Compressing this
file generates a file of the format filename.AS_. To take advantage of the
compression, you have to use the COMPRESS utility (part of the Windows SDK) to
compress each VisualLifted application file.

The compressed VisualLifted application file requires only about 30 % of the disk
space of an un-compressed file. On fast processors, it is recommended to use the
compressed format to save disk space and to improve performance.

VisualLift automatically distinguishes compressed and un-compressed formats. If
both formats (filename.AST and filename.AS_) are available, VisualLift gives priority
to the compressed format.

Start a VisualLifted Application
Before using a VisualLifted application within the VisualLift Windows RTE, you have
to create a program item. The prerequisites are:

� That the VisualLift Windows RTE is installed on your workstation
� That the VisualLifted application files are installed as described in Appendix B,

“System Information” on page 99.

You have to perform Create a program item for each VisualLifted application. The
result is that the VisualLifted application icon is located in the VisualLift group.
Double-clicking on the program icon starts the VisualLifted application.

 Chapter 7. VisualLift RTE for Windows 73

 VisualLift RTE for Windows

Create the Program Item
1. Open the VisualLift group window created during the installation
2. From the File menu, select New
3. In the New Program Object dialog box, select the Program Item option, and

then select the OK button.

4. Fill in the Program Item Properties dialog box as necessary, and select the
OK button.

For Command Line enter the following:

VLW [application [session]] [parameters]

where VLW is the name of VisualLift Windows RTE program (VLW.EXE).
where application is the name of the VisualLifted application, e.g. APPL. If the
application name is omitted, you will be prompted to specify it.
session is the session ID of the host session. Default is A.

See Appendix C, “Options for Running a VisualLifted Application” on page 103 for
the parameters.

For Working Directory enter the following:

D:\FCL is the directory where the VisualLift Windows RTE resides.

 Hint

Specifying the Working Directory eliminates the need to set the path (in
AUTOEXEC.BAT) and the environment variables.

74 VisualLift User's Guide

 VisualLift RTE for Windows

Start Applications without Specification
Starting a VisualLifted application can be done by associating the application name,
the session, and parameters with the VisualLift Windows RTE as described in
“Create the Program Item” on page 74.

Another way to start applications is to create a program item as described in
“Create the Program Item” on page 74 and not specifying the application, session,
and the parameters. Double-click on the VisualLift icon and the following window
appears:

Specify the Application Name, the Host Session, and Optional Parameters to start
an application. The application name can be selected from the drop-down
combination box as shown in the following window. (The names shown in the
drop-down combination box below are examples).

 Chapter 7. VisualLift RTE for Windows 75

 VisualLift RTE for Windows

Pre-loading VisualLift Libraries during Startup
The startup time for the invocation of VisualLift can be reduced by loading the
resident parts of VisualLift during Windows startup. Perform one of the following
choices to pre-load VisualLift:

1. Create a program item in the Startup group.

a. Open the Startup group window.
b. From the File menu, select New
c. In the New Program Object dialog box, select the Program Item option,

and then select the OK button.

d. Fill in the Program Item Properties dialog box as necessary, and select
the OK button.

Command Line

VLWHOLD is the name of the program.

Working Directory

D:\FCL is the directory where VLWHOLD resides.

e. The VLWHOLD object is displayed in the Startup group window.

2. Edit the win.ini file. In line run= enter fclroot\VLWHOLD.
For example: run=d:\fcl\vlwhold

76 VisualLift User's Guide

 VisualLift RTE for Windows

How to Free Space Occupied by VisualLift
For a fast startup VisualLift loads its code libraries only once and keeps them in
Windows virtual memory available for the next start. Therefore repeated starts run
very fast.

If you need space for other applications, you can free the space by closing the icon
showing VisualLift with a lock (see page 76 for an example of such an icon). Next
time you start VisualLift, the code libraries have to be loaded again, but in the
meantime you can use the released space.

 Chapter 7. VisualLift RTE for Windows 77

 VisualLift RTE for Windows

78 VisualLift User's Guide

 Automated Build Process

Chapter 8. VisualLift and Automated Build Process

As an alternative to using the VisualLift Workbench, some of the development tasks
may be performed in batch mode. In a workstation development environment
usually a library system is used to store the source code and maintain multiple
versions. An automated build process can be run against that library.

There are different types of source code that make up a VisualLifted application,
like textual format of window definitions (extension UIT), code of application
provided routines (extension C), event files (extension EVT), etc.

Some of the deliverables of a VisualLifted application, like help files, icons, or DLLs
for application provided routines, are generated using tools that are provided by the
operating system or the respective toolkit. PWS windows and the application itself
can be only generated by using functions of the VisualLift Workbench. To enable
these objects to be processed during an automated build process as well, VisualLift
provides a set of commands which can be issued from the OS/2 command line or
from a command procedure. The following sections describe the purpose and
syntax of those commands.

Generate PWS Window (Text) from PWS Window
If you do not use the textual window definition format, you can use the FCLGUIDX
command to generate the textual representation and then store the text file in a
library. The command syntax is:

 FCLGUIDX drive:\directory\WINDOW.UIT

The target file that should contain the textual representation must be fully specified.
The file name has to be the name of the PWS Window object.

Generate Textual Application Format from Application
To be able to store a VisualLifted application, especially its settings, in a library,
you can use the FCLGUIDX command to generate the textual representation of the
application. Note that no textual representation of an application is used when
working with the VisualLift Workbench. The command syntax is:

 FCLGUIDX drive:\directory\APPLICATION.UIT

The target file that should contain the textual representation must be fully specified.
The file name has to be the name of the Application object.

 Copyright IBM Corp. 1995, 1996 79

 Automated Build Process

Generate PWS Window from PWS Window (Text)
To generate a VisualLifted application, all windows that are part of this application
have to be available. The FCLASTG command generates a PWS window from the
textual representation of that window. The command syntax is:

 FCLASTG drive:\directory\WINDOW.UIT

The file containing the textual representation must be fully specified. A PWS
Window object having the same name as the text file will be generated.

Generate Application from Textual Application Format
The FCLAPLG command generates an application from the textual representation of
that application. Note that no textual representation of an application is used when
working with the VisualLift Workbench. The command syntax is:

 FCLAPLG drive:\directory\APPLICATION.UIT

The file containing the textual representation must be fully specified. An application
object having the same name as the text file will be generated.

Check Semantical Correctness of a PWS Window
When generating a PWS window from the textual representation within the
VisualLift Workbench, the window definition is also checked for semantical
correctness. The FCLASTG command does not include this check, but you can use
the FCLCCX command for this purpose. The command syntax is:

 FCLCCX window

Only the name of the PWS Window object must be specified.

80 VisualLift User's Guide

 VisualLift Hints and Tips

Chapter 9. VisualLift Hints and Tips

Tricks of the trade are described within this chapter. The following hints and tips
might avoid problems during your work with VisualLift. The sequence of hints is
organized according to the following structure:

� General hints concerning VisualLift
� Workbench related hints
� Graphic editor related hints
� RTE related hints.

 General Hints
Learning to use VisualLift effectively
The first host application to be VisualLifted should be a small one (recommended
size: up to 10 screens) or a subset of a large application. When the small host
application is successfully VisualLifted, then VisualLift a larger host application.

How many controls are advisable within one window?
The average number of controls within one window should not exceed 25 controls.
Significantly more controls will cause usability problems. If you have to use more
than 40 controls on the host screen think about:

� Using one or more secondary windows or
� Using a notebook.

How many windows are useful within an application?
50 windows. Extremely large applications may cause performance problems. On
average, an application consisting of about 50 windows will have no performance
problems - provided that each window contains up to 25 controls.

How to stop the storage resident parts of VisualLift?
Enter in the OS/2 command prompt: FCLWMSSE STOP
Under Windows close the icon showing the lock (see page 76 for an example of
such an icon).

 Copyright IBM Corp. 1995, 1996 81

 VisualLift Workbench

 VisualLift Workbench

Export and Import
The export and import functions are designed for projects and applications known
to VisualLift. The following object types and corresponding files are recognized by
VisualLift:

Scanned Host Screens *.SCN
PWS Windows (Text) *.UIT
PWS Windows *.AST and *.MSG and *.NLS
Applications *.AST and *.MSG
Event Files *.EVT
Workbench Files *.PRJ and *.INI

Select Export referenced files in the corresponding Export window to also export
graphic files (*.BMP, *.ICO, *.MET), help files (*.HLP), and application provided
routines (*.DLL).

Exclude and Include
Include and exclude means that objects are made visible or not visible. The same
object can be contained in several project folders.
Workbench objects with identical names are physically identical - even if they are
contained in different projects folders.

 Transformation
You can convert the PWS Window (Text) object into a PWS Window object - or
vice versa. This offers you freedom in how to use VisualLift. On the other hand it
is your responsibility to synchronize source object(s) and converted object(s).
Whenever you try to convert either a PWS Window or a PWS Window (Text) object
to a target with a newer date, a confirmation window informs you that you might
overwrite changes.

Recommendation

For the novice user of VisualLift the PWS Window is the source object. The result
of conversion is a PWS Window (Text) object.

For the experienced user of VisualLift the PWS Window (Text) is the source object.
The result of conversion is a PWS Window object.

Any update of either object should be propagated immediately to the corresponding
object. For example, if a new Panel ID is inserted into a PWS Window object, the
corresponding PWS Windows (Text) object should be built.

PWS Window (Text) with Include Statements and Comments
Comments in a PWS Window (Text) are eliminated when transforming the PWS
Window (Text) to a PWS Window.

Whenever a PWS Window (Text) is transformed into a PWS Window, the
<INCLUDE> statements are resolved. If an error occurs during the transformation,
the corresponding messages point to a line of the PWS Window (Text) file. In the
directory fclroot\FCL\TMP a file with identical name is created which contains all

82 VisualLift User's Guide

 VisualLift Workbench

resolved <INCLUDE> statements - in PWS Window (Text) format. Examining this
file helps to locate the error.

When performing the transformation sequence PWS Window (Text) ⇒ PWS
Window ⇒ PWS Window (Text) any comment or <INCLUDE> statement that has
been used in the original textual representation will not be restored.

Designing a PWS Window - FAST!
This is a way to create a PWS window from the scanned host screen object really
fast. Just click-on with mouse button 2 on your host screen object and select Build
PWS window. This creates a PWS window which shows all input fields as entry
fields. PF keys are shown as push buttons. Any other controls are not created.
Also the panel ID has been already assigned.

See this as additional help for designing a PWS window - it does not replace Task
3 Designing a PWS Window!

 Refresh
The refresh action of the VisualLift Workbench rebuilds the internal PWS Window
list and the internal application list. These internal lists are used to reference PWS
Windows and applications in the VisualLift Workbench for performance reasons. A
refresh is required if PWS Windows or application files (extension AST or MSG) are
added, removed, or renamed without control of the VisualLift Workbench.

 Chapter 9. VisualLift Hints and Tips 83

 Graphic Editor Hints

Graphic Editor Hints

Drag and Drop
The drag and drop technique is used within VisualLift. For learning this interaction
technique it is recommended to study the OS/2 Tutorial.

 Window
Open the Window Definition Attributes for the window with a double-click on the
background within the window. Define the window definition attributes within the
dialog sequence.

Dynamic Entry Fields
Split up dynamic entry fields (larger than 80 characters) in fields with up to 80
characters or use a multi-line entry field - otherwise the window size may not fit
onto your screen (depending on the monitor and the graphic card you are using).

 Accelerator Keys
When VisualLifting an application it is a good idea to support the same keys as the
host application, e.g. PF keys. When learning the new user interface, the users are
still able to use the application in their known way.

Controls and Group Controls
You can use the following controls only inside their corresponding group controls:

Control Group Control
Radio Button Layout(Group) or Static(GroupBox)
Layout(Column) Layout(ColumnGroup)
Layout(ColumnHeading) Layout(ColumnHeadingGroup)
Layout(ColumnHeadingGroup) Layout(ColumnGroup)
NoteBookPage NoteBook

 Message Mapping
Within the graphic editor double-click with the mouse button 1 on the background of
the window. This action causes the Window - Attributes notebook to appear. Go
to the mapping section.

Select now the field in the host screen which is to be mapped as a workstation
message window.

Drag the host field from the opened Host Screen object and drop it over the
mapping region. The corresponding position and length values are displayed in the
Mapping position/length field.

If you define the position of the message field in the Host Screen as a message in
the PWS Window, the run-time environment is notified whenever a value appears in
the host field. The value is treated as a message text and is displayed in a
separate message box.

84 VisualLift User's Guide

 RTE Hints

 Deleting Controls
To delete a control out of your window, drag it to the shredder.

 RTE Hints

 Terminal Models
The terminal models defined in the emulator session should be identical for
VisualLifting a host application and running a VisualLifted application. In some
cases host screens are not recognized by VisualLift if the host screen sizes are
different. For example, an application developed on a 32x80 terminal may not run
on a 24x80 terminal.

 Monitor Resolution
When developing and using the VisualLifted application on workstations, use
identical monitor resolution for developing and running the VisualLifted application.
Otherwise the window layout may be unpredictable.

� When developing a VisualLifted application on a workstation with higher
resolution monitors (for example, XGA or SVGA) the VisualLifted application
runs on workstations with higher resolution monitors. Running the same
VisualLifted application on workstations equipped with VGA produces windows
which might be larger than the physical screen. This has to be taken into
consideration especially for the Windows RTE, because there the window is
neither scrollable nor sizeable.

� When developing a VisualLifted application on a workstation with VGA, the
VisualLifted application will run on a workstation with VGA and XGA/SVGA.
The appearance may vary due to different font resolutions.

 Chapter 9. VisualLift Hints and Tips 85

 RTE Hints

86 VisualLift User's Guide

 Problem Determination

 Chapter 10. Problem Determination

 Common Problems
The symptoms you notice when working with VisualLift are not necessarily confined
on VisualLift - problems may come from, for example, incorrect CONFIG.SYS (for
Windows AUTOEXEC.BAT) entries.
This chapter provides solutions for the most common problems.

VisualLift OS/2 Symptoms:

Disk full . 89
Low performance . 89
Scrambled tables within VisualLift Help or Reference 89
Host Screen not recognized at run-time 89
Host Screen not recognized, end of application instead 90
Workstation windows are too large . 90
Another application is already active . 90
Message 'Cannot start FCLXMAP.EXE ...' or SYS1804 90
The graphic editor abends . 91
Error when calling a newly imported application 91
VisualLift gets timeout message . 91
VisualLift starts and immediately ends . 91
Message file not found . 91
Application not found . 92
No connection to host emulator . 92
The application cannot be started . 92
Would like to view the host application . 92
IBM service asks for a trace . 92

VisualLift Windows RTE Symptoms:

Main storage too small . 93
Application not found . 93
DLLs not found when starting application 93
No connection to host emulator . 93
The application cannot be started . 94
The old version of an application is invoked 94
Would like to view the host application . 94
After leaving VisualLift, a VisualLift icon remains on the screen 94
VisualLift beeps and/or ends without an error message 94
General protection fault in a DLL belonging to the host emulator program 94
Problem during installation of VisualLift Windows RTE 94
Problems using the RUMBA emulator . 95
Workstation windows are too large . 95
IBM service asks for a trace . 95
Message in trouble log if screen is sizeable 95

 Copyright IBM Corp. 1995, 1996 87

 Problem Determination

 Trouble Log
If an error occurs in a VisualLift component, an error message is created and
recorded in a file. This file contains approximately the latest 50 messages. The file
is called Trouble Log. The purpose of the trouble log is to assist you in problem
determination.

The trouble log is the central point of information within VisualLift when errors
occur. The trouble log file is located in fclroot\FCL directory and is named
FCLMSG.LOG - whenever something does not perform the way you expected it,
invoke the trouble log by:

� Clicking the mouse button 2 on the background of the VisualLift Workbench -
Contents window

� Selecting Inspect trouble log in the context menu
� The trouble log viewer is opened displaying the VisualLift error messages
� Double-clicking on a specific error message opens the explanation window.

Figure 20. The Trouble Log File

Trouble Log within OS/2 RTE
Within the RTE the error messages are displayed via the trouble log viewer, too.
However, you cannot invoke the trouble log viewer explicitly. The trouble log is a
file named FCLMSG.LOG, is an ASCII file, and is located in the directory fclroot\FCL.
Whenever an error occurs you get the choice to open the trouble log. You can also
request the message explanation with a double-click on a specific error message.
You can also view the contained error messages with any text editor.

Trouble Log within Windows RTE
Like in OS/2 the trouble log is a file named FCLMSG.LOG, is an ASCII file, and is
located in the directory fclroot\FCL.

You can view the contained error messages with any text editor or with the
NOTEPAD.EXE (part of Windows). You can delete messages from the trouble log,
or you can delete the trouble log itself. Note that the latest messages are located
at the bottom of the trouble log.

88 VisualLift User's Guide

 Problem Determination

VisualLift OS/2 Symptoms

 Disk full
Solution: When running several applications concurrently, OS/2 uses the
SWAPPER.DAT. If a warning message appears, telling you that no disk space is
available, do one or more of the following:

� Close other applications
� Move the SWAPPER.DAT to another disk (do not forget the CONFIG.SYS change

and to reboot your workstation)
� Delete data on the disk drive where the SWAPPER.DAT is located.

As a rule of thumb, the SWAPPER.DAT size may increase by more than 10MB when
running VisualLift.

 Low performance
Solution: Low performance can be caused by various reasons. The most
important ones related to VisualLift are:

� Too many controls within one window
� Too many windows within a VisualLifted application

Scrambled tables within VisualLift Help or Reference
Solution: The tables within the VisualLift Reference and Help information are built
using a monospaced font. If no monospaced font is installed on your system the
information presentation facility uses the system proportional font instead. Install
the System Monospaced font.

Host Screen not recognized at run-time
 Solution:

� Is the host screen appearing at run-time identical with the host screen used
when building the application?

� Is the screen recognized if the panel id algorithm Use all fields, ignore
protected attributes instead of Use all fields is used for building the panel id?
See “Building a Panel ID - Task 5” on page 57 how to do this. Rebuild the
application then.

� Has the PWS window been included into the list of PWS window objects of the
application? See “Building an Application - Task 6” on page 58 how to include
a created window.

� Did you correctly specify the identifier of the host session? See page 35 if the
application starts from the workbench. See page 66 for specifying the session
ID of the host session if the application starts from its own program object.

� Did you develop an application on a different terminal model than the one you
use for testing now? For example, you developed the application on an 32x80
terminal and test it on an 24x80 terminal. It usually causes problems if the host
application dynamically exploits different terminal models.

Do the following if none of the above applies:

� Run the application in test mode (within the VisualLift Workbench).
� Navigate to the point within the application where the host screen could not be

recognized.
� Close the application: a dialog appears listing all host screens not recognized

during the test run.
� Select the host screen you want to analyze and press Save

 Chapter 10. Problem Determination 89

 Problem Determination

� Open the project folder that contains the application.
� Include the host screen object that could not be recognized.
� Open the host screen object that could not be recognized.
� Press mouse button 2 on the host screen window.
� Select Select in the context menu.
� Select Compare objects in the cascading menu.
� In the Host Screen - Compare dialog box select the saved host screen.
� Press the Compare push button.
� All host fields that do not match the specified Panel ID for the PWS Window

get selected state emphasis - these are the differences between the two
windows.

� Modify the panel identification, for example, by excluding these regions.

Using this feature allows you to identify those regions of the host screen that
dynamically change at run time.

Host Screen not recognized, end of application instead
VisualLift application seems to have ended, but Screen not recognized appears in
the 3270 emulator window.

Solution: VisualLift application is still active and treats the currently active 3270
screen as 'not recognized'.

� Check the application end conditions of the VisualLift application. See page 60
for specifying end conditions.

Workstation windows are too large
Solution: The monitor resolution has to be identical for VisualLifting a host
application and running a VisualLifted application. Different monitor resolutions
may result in a different window layout. Keep in mind:

� When developing a VisualLifted application on a workstation with higher
resolution monitors (for example, XGA or SVGA) the VisualLifted application
runs on workstations with higher resolution monitors. Running the same
VisualLifted application on workstations equipped with VGA might result in
windows which are larger than the physical screen.

� When developing a VisualLifted application on a workstation with VGA, the
VisualLifted application will run on a workstation with VGA and XGA/SVGA.

Another application is already active
Several VisualLift applications cannot use the same host session concurrently

Solution: Check the OS/2 task list and close any VisualLift application using the
host session. Restart your VisualLift application.
Also check if the application end conditions are correctly defined. See page 60.

Message 'Cannot start FCLXMAP.EXE ...' or SYS1804
VisualLift cannot be started as VisualLift dynamic link libraries (DLLS) are not set in
the LIBPATH of the CONFIG.SYS

Solution: Reboot your system. If this is not successful, delete VisualLift and
repeat the installation to ensure that the paths are correctly set in the
CONFIG.SYS. Make sure to select the option Update CONFIG.SYS when
installing VisualLift.

90 VisualLift User's Guide

 Problem Determination

Check if the environment variables are set (see “Environment Variables” on
page 101).

The graphic editor abends
 Solution:

If the PWS window is corrupted, rebuild the PWS Window from the PWS
Window (Text)

Error when calling a newly imported application
and

Error when calling an application within a newly imported
project
Solution: Perform a Refresh Workbench (see context menu on page 34)

VisualLift gets timeout message
Solution: Increase the value of the OS/2 FCL_TIMEOUT variable which is set in
the CONFIG.SYS. Default is 30 seconds. You can also overwrite the timeout
value by defining the /FCL_TIMEOUT=timeoutval option for the application's program
object (see page 66.)

VisualLift starts and immediately ends
Solution: The following can cause this behavior

1. Check the path defined in the program object from which VisualLift started. The
path may, for example, point to a directory where VisualLift was previously
installed.

2. Neither an invocation key nor invocation command (see page 59) is defined for
the application. Also the End Condition specifies a state which is true on the
host screen when the application starts. In this case the end condition is true
and VisualLift ends.
Define the invocation command, invocation key, and specify different end
conditions. Specify CMS when the application resides on a CMS system.

3. The first host screen update after the application invocation causes the end
condition to be true, and the application ends. This may happen if the host
application clears the screen before displaying the first screen. Then the empty
screen meets the application end criteria.

Message file not found
Message file FCLM90EN.MSG could not be found

 Solution:

1. Check whether the OS/2 variable FCLROOT has been set
2. Check whether the message file FCLM90EN.MSG is in fclroot\RTS\MSG, and

reinstall the message file, if necessary
3. Check whether the message file is broken and reinstall it

 Chapter 10. Problem Determination 91

 Problem Determination

Application not found
Solution: Check whether these two files are available:

The VisualLifted application file (either, for example MYAPPL.AST) is located in the
directory fclroot\FCL\ASDATA
The associated message file is located in the directory
fclroot\FCL\NLSDATA\ENGLISH

No connection to host emulator
 Solution:

� Make sure the host emulator is started and a session is established before you
start the VisualLifted application

� When testing from the workbench:
– Check your project settings and check if the simulated 3270 session is

correctly specified.
� Check whether the correct session ID is specified (in most cases session A)
� The directory where the EHLLAP.DLL of the host emulator code resides must

be in the current LIBPATH.
� If you have more than one host emulator or multiple versions of one emulator

installed, make sure that only the correct one (but not the other ones) is
specified in the LIBPATH= statement. Erase all emulators except the currently
used one

� If you use an unsupported emulator:
– Find out under which name the HLLAPI is to be called
– VisualLift invokes PCSHLL.DLL at entry point of HLLAPI
– If the host emulator has another DLL name and/or entry point, direct

VisualLift to these by specifying the environment variables
fclattachdll=DLL name
fclattachproc=Procedurename

The application cannot be started
Solution: The initiation conditions are not fulfilled or
the specified host session is not operable or does not exist.

More information: No connection to host emulator (see previous symptom).

Would like to view the host application
Solution: To view the host application in the emulator session parallel to the
VisualLifted application, either specify the FCL_SESSMODE=SHOW variable in the
CONFIG.SYS or specify the /FCL_SESSMODE=SHOW option for the application's
program object (see page 66.)

IBM service asks for a trace
Solution: VisualLift can be started with a debug option. See Appendix C,
“Options for Running a VisualLifted Application” on page 103.

92 VisualLift User's Guide

 Problem Determination

VisualLift Windows RTE Symptoms

Main storage too small
Solution: To run a VisualLift application the required real storage size is
application file size plus 6 MB. If the real storage is smaller, the application will not
execute.

Rule of thumb: the recommended 10MB main storage will result in good
performance if VisualLifted application file size is smaller than 3MB.

Application not found
Solution: Check whether these two files are available:

The VisualLifted application file (either, for example MYAPPL.AST or MYAPPL.AS_) is
located in the directory fclroot\FCL\ASDATA
The associated message file is located in the directory
fclroot\FCL\NLSDATA\ENGLISH

DLLs not found when starting application
 Solution:

� Make sure VisualLift is completely and correctly installed
� Make sure that you start the VisualLifted application from the program manager
� Check the working directory entry for the program item. It should point to the

directory where VisualLift resides.
� Check whether the environment variables FCLROOT and FCLRTS are set -

VisualLift recommends not to set the environment variables. If they are set
check whether they point to the VisualLift directories.

No connection to host emulator
 Solution:

� Make sure the host emulator is started and a session is established before you
start the VisualLifted application

� Check whether the correct session ID is specified (in most cases session A)
� The directory where the host emulator code resides must be in the current

path.
� If you have more than one host emulator or multiple versions of one emulator

installed, make sure that only the correct one (but not the other ones) is
specified in the PATH= statement. Erase all emulators except the currently
used one

� If you use an unsupported emulator:
– Find out under which name the HLLAPI is to be called
– VisualLift invokes PCSHLL.DLL at entry point of HLLAPI
– If the host emulator has another DLL name and/or entry point, direct

VisualLift to these by specifying the environment variables
fclattachdll=DLL name
fclattachproc=Procedurename

 Chapter 10. Problem Determination 93

 Problem Determination

The application cannot be started
Solution: The initiation conditions are not fulfilled or
the specified host session is not operable or does not exist.

More information: No connection to host emulator (see previous symptom).

The old version of an application is invoked
Solution: If the VisualLifted application is available in compressed format (for
example, MYAPPL.AS_) and in un-compressed format (MYAPPL.AST) VisualLift
invokes the compressed one, independent of the creation date. To invoke the
actual VisualLifted application, either delete the (old) compressed format or create a
new VisualLifted application in compressed format.

Would like to view the host application
Solution: To view the host application in the emulator session parallel to the
VisualLifted application do the following:

 � Exit Windows
� Enter the command SET FCL_SESSMODE=SHOW

 � Restart Windows

After leaving VisualLift, a VisualLift icon remains on the screen
Solution: This is a regular end situation - the icon indicates that the VisualLift
libraries remain in memory for a fast start next time you invoke a VisualLifted
application.
If you are short on resources, close the icon to free the resources for other
applications. Next time you start a VisualLifted application the libraries will be
loaded again.

VisualLift beeps and/or ends without an error message
Solution: Inspect the trouble log. It is named FCLMSG.LOG and is located in the
directory fclroot\FCL
Use any editor or the NOTEPAD.EXE. The latest message is located at the bottom
of the trouble log.

General protection fault in a DLL belonging to the host emulator
program
Solution: In a DLL belonging to the host emulator program a protection fault
occurred. Make sure you have the newest service level of the host emulator
program.

Problem during installation of VisualLift Windows RTE
Solution: The software installer holds an INI-file named EPFWIS.INI in your
windows directory. In case of problems edit the file and remove the section labeled
EPFINST_VisualLift.

Try to install VisualLift again.

94 VisualLift User's Guide

 Problem Determination

Problems using the RUMBA emulator
Solution: The directory where the file EEHLLAPI.DLL is located must be in the
PATH= statement, for example
C:\RUMBA\SYSTEM

RUMBA does not automatically assign a session ID to your host session.

� Select the menu item Session
� Select the pull down EHLLAPI Configuration
� Select the check box EHLLAPI SDK
� Specify a session ID.

It is not necessary to set the environment variable fclattachdll= to the name used
by RUMBA (EEHLLAPI). VisualLift automatically performs this task.

Workstation windows are too large
Solution: The monitor resolution has to be identical for VisualLifting a host
application and running a VisualLifted application. Different monitor resolution may
result in a unpredictable window layout. Keep in mind:

� When developing a VisualLifted application on a workstation with higher
resolution monitors (for example, XGA or SVGA) the VisualLifted application
runs on workstations with higher resolution monitors. Running the same
VisualLifted application on workstations equipped with VGA produces windows
which might be larger than the physical screen. This has to be taken into
consideration especially for the VisualLift RTE for Windows, because the
window cannot be scrolled.

� When developing a VisualLifted application on a workstation with VGA, the
VisualLifted application will run on a workstation with VGA and XGA/SVGA.

IBM service asks for a trace
Solution: VisualLift RTE can be started with a debug option. This option creates
the file HLLAPI.LOG in the directory where VisualLift RTE is installed. This file is an
ASCII file. The content is for internal IBM debugging purposes. To create this file
invoke VisualLift RTE with the command line parameter /DEBUG=EHLLAPI.
For example, the invoke command is:
VLW appl A /DEBUG=EHLLAPI

Message in trouble log if screen is sizeable
Solution: Within VisualLift RTE for Windows the windows are not sizeable. If a
sizeable screen is used within a VisualLifted application, a message is written into
the trouble log. This message can be suppressed. To suppress the message
invoke VisualLift RTE with the command line parameter /NSM

For example, the invoke command is: VLW appl A /NSM

 Chapter 10. Problem Determination 95

 Problem Determination

96 VisualLift User's Guide

 System Requirements

 Appendix A. System Requirements

Supported Host Operating Systems
All versions and releases of:

 � MVS/ESA
 � VSE/ESA
 � VM/ESA
 � OS/390

VisualLift Application Development Environment
CPU 80386 and higher (80486 recommended)

Main Storage 12MB (16MB recommended)

Hard Disk Space 10MB (including RTE)

Monitor Resolution VGA (XGA recommended)

Host Connection Hardware 327x adapter card, supported by host connection software

Pointing Device PS/2 mouse (or equivalent)

Operating System OS/2 2.1 and higher

Host Connection Software � Communications Manager/2 1.0 and higher (or
equivalent)

� IBM Personal Communications/3270 for OS/2 Version 4
� Attachmate EXTRA! for OS/2 Version 1.2 or Version 2.0
� WallData RUMBA 3.0 for OS/2
� DCA IRMA 2.1 for OS/2

VisualLift OS/2 Run-Time Environment
CPU 80386 and higher (80486 with at least 50 MHz

recommended)

Main Storage 12MB (16MB recommended)

Hard Disk Space 6MB

Monitor Resolution VGA (XGA recommended)

Host Connection Hardware 327x adapter card, supported by host connection software

Pointing Device PS/2 mouse (or equivalent)

Operating System OS/2 2.1 and higher

Host Connection Software � Communications Manager/2 1.0 and higher (or
equivalent)

� IBM Personal Communications/3270 for OS/2 Version 4
� Attachmate EXTRA! for OS/2 Version 1.2 or Version 2.0
� WallData RUMBA 3.0 for OS/2
� DCA IRMA 2.1 for OS/2

 Copyright IBM Corp. 1995, 1996 97

 System Requirements

VisualLift Windows Run-Time Environment
CPU 80386 and higher (80486 with at least 50 MHz

recommended)

Main Storage 6MB (10MB recommended)

Hard Disk Space 6MB

Monitor Resolution VGA (XGA recommended)

Host Connection Hardware As supported by the host connection software (see below)

Pointing Device PS/2 mouse (or equivalent)

Operating System IBM-DOS 5.0 and higher (recommended 6.3) or MS-DOS
5.0 and higher (recommended 6.2)

 � Windows 3.1
VisualLift requires Windows Extended 386 mode.

� Windows for Workgroups 3.11
 � Windows95
� Windows/NT is planned to be supported at a later point

in time. Refer to README.WRI for additional
information

VisualLift supports Windows native. WINOS2 under OS/2
version 2 is not supported. Windows 3.1 under OS/2 Warp
is supported for test purposes only. (The appearance may
not be identical with native Windows).
When using OS/2 use the OS/2 version of VisualLift.

Host Connection Software for
Windows 3.1 and Windows for
Workgroups 3.1.1

For Windows95 refer to
README.WRI for info on
supported emulators

Personal Communication/3270 3.1 for Windows and higher
(or equivalent with EHLLAPI support)
EXTRA! FOR WINDOWS 4.01
RUMBA 4.0 for Windows
DCA IRMA WorkStation for Windows Version 2 NetSoft
DynaComm/Elite Version 3.5
NCP 3270 Emulation for Windows, Version 2.30 by NCP
engineering, Nürnberg

Optional Workstation Software
The coding of application provided routines requires the following software for
OS/2:

� IBM Developer's Toolkit for OS/2 2.1 and higher
� IBM C++/2 Compiler 2.1 and higher (32 Bit)

The coding of application provided routines requires the following software for
Windows:

� Microsoft Windows SDK 3.1 and higher
� Microsoft C Compiler 6.0 and higher (or equivalent).

98 VisualLift User's Guide

 System Information

 Appendix B. System Information

Files of a VisualLifted Application
The following files make up a VisualLifted application:

Figure 21. The VisualLift File Types Related to an Application

Extension Purpose

*.AST The VisualLift application file - the VisualLifted windows as well as the
invocation and termination condition are contained within that file.
It resides in fclroot\FCL\ASDATA

*.MSG The VisualLift application message file - text strings of the VisualLifted
application are contained within this file.
It resides in fclroot\FCL\NLSDATA\ENGLISH

*.EVT (Optional) the event file - used to define events of a VisualLifted
application to be used by the RTE.
It resides in fclroot\FCL\NLSDATA\ENGLISH

*.HLP (Optional) the help files for a VisualLifted application.
They resides in fclroot\FCL\NLSDATA\ENGLISH

*.DLL (Optional) the file where the application provided routines are located.
They reside in fclrts \RTS\DLL
For the Windows RTE they reside in fclroot

*.BMP (Optional) the bitmap files- used to incorporate pixel graphic into the
PWS Window.
They reside in fclroot\FCL\NLSDATA\ENGLISH

*.ICO and
*.WCO

(Optional) the icon files - used to incorporate icons into the PWS
Window.
They resides in fclroot\FCL\NLSDATA\ENGLISH

*.MET (Optional) the metafiles- used to incorporate vector graphic into the
PWS Window.
They reside in fclroot\FCL\NLSDATA\ENGLISH

 Copyright IBM Corp. 1995, 1996 99

 System Information

Files of a VisualLifted Window
The following files make up a VisualLifted window:

Figure 22. The VisualLift File Types Related to a Window

Extension Purpose

*.AST The VisualLift PWS Window file - the definition of controls as well the
mapping information are contained within this file.
It resides in fclroot\FCL\ASDATA

*.MSG The VisualLift PWS Window message file - text strings of the PWS
Window are contained within this file.
It resides in fclroot\FCL\NLSDATA\ENGLISH

*.NLS (Optional) the national language support file - this file contains the
extracted text strings of a PWS Window to be translated separately.
It resides in fclroot\FCL\NLSDATA

*.SCN (Optional) the VisualLift host screen file - the scanned host screen
belonging to the PWS Window is contained within this file.
It resides in fclroot\FCL\HOSTSCAN

*.UIT (Optional) the VisualLift PWS Window (Text) file.
It resides in fclroot\FCL\PWSTEXT

CONFIG.SYS Updates by OS/2 VisualLift
Take the case VisualLift is to be installed on Drive D:\LIFT

The CONFIG.SYS update performed by VisualLift are as follows:

LIBPATH=.;D:\LIFT\RTS\DLL;D:\LIFT\ADS\DLL;

SET PATH=.;D:\LIFT\RTS\BIN;D:\LIFT\ADS\BIN;

SET DPATH=.;D:\LIFT\RTS\HLP;D:\LIFT\ADS\HLP;

SET HELP=D:\LIFT\RTS\HLP;D:\LIFT\ADS\HLP;D:\LIFT\FCL\NLSDATA\ENGLISH;

SET INCLUDE=D:\LIFT\FCL\USEREXIT;

SET LIB=D:\LIFT\FCL\USEREXIT;

SET BOOKSHELF=D:\LIFT\FCL\NLSDATA\ENGLISH;D:\LIFT\ADS\HLP;

SET FCLROOT=D:\LIFT

SET FCLRTS=D:\LIFT

SET FCLADS=D:\LIFT

100 VisualLift User's Guide

 System Information

 Environment Variables
The following environment variables are available within VisualLift:

Note: For VisualLift RTE for Windows, FCLATTACHDLL and FCLATTACHPROC
have to be set only if a non-supported emulator is used.

Figure 23. The Environment Variables of VisualLift

Environment Variable Description

SET FCLROOT Specifies the drive and directory of the
workstation where VisualLift resides.

SET FCLADS Specifies the drive and directory of the
workstation where the VisualLift application
development environment is located.

SET FCLRTS Specifies the drive and directory of the
workstation where the VisualLift run-time
environment is located.

SET FCLROOTLAN Specifies the drive and directory of the server
workstation where VisualLift is located.

SET FCLATTACHDLL (see note
below)

Specifies the DLL offering the EHLLAPI interface.
Specify the DLL name only without drive,
directory, or extension.

SET FCLATTACHPROC (see note
below)

Specifies the procedure offering the EHLLAPI
interface.

SET FCLLANGUAGE Specifies the language of VisualLift (default is
English).

SET FCL_SESSMODE=SHOW Specifies that the emulator session is visible at
the same time as the VisualLifted application.

Note: if you are using the DynaComm and
NCP 3270 emulators, the emulator session is
always visible regardless if this variable is
specified.

SET FCL_TIMEOUT Specifies the time in seconds the VisualLifted
application waits for the host reaction.

SET FCL_EMULATOR Specifies the supported emulator (OS/2 only).
Allowed values are CM2, RUMBA, EXTRA!,
IRMA, and PC3270.

 Appendix B. System Information 101

 System Information

Environment Variables and Host Emulators for VisualLift RTE for
Windows

For VisualLift RTE for Windows, the following default values for supported
emulators have been implemented:

Figure 24. The Environment Variables for Supported Emulators

Emulator FCLATTACHDLL FCLATTACHPROC

PC/3270 PCSHLL HLLAPI

EXTRA! PCSHLL HLLAPI

Rumba EEHLLAPI HLLAPI

IRMA ACS3EHAP HLLAPI

DynaComm HLLAPI HLLAPI

NCP 3270 ACS3EHAP HLLAPI

102 VisualLift User's Guide

 Options for Running a VisualLifted Application

Appendix C. Options for Running a VisualLifted Application

This part lists the options which can be specified for running a VisualLifted
application.

Options: (optional) can be one of the following:

[/P=pos] Overrides the position of the invocation string defined in
the application settings.

[/S=invocstring] Invocation string that overrides the invocation string
defined in the application settings. If the invocation string
contains blanks it should be enclosed in single quotes or
double quotes. If the invocation string contains
single/double quotes, then the string must be enclosed in
double/single quotes.

[/IS=initstring] Overrides the initiation condition string in the application
settings. Only one initiation condition may be specified.

[/IP=initpos] Overrides the initiation condition position defined in the
application settings.

[/Q] If this option is specified, the text of the host emulator
window title remains unchanged if a host screen is not
recognized at run-time. The default behavior is that the
text of the emulator window is changed to VisualLift - X:
Screen not recognized (applname)

[/FCLROOT=path] Overrides the setting of the environment variable
FCLROOT for this invocation. FCLROOT specifies the
path where VisualLift resides.

[/FCLROOTLAN=path] Overrides the setting of the environment variable
FCLROOTLAN for this invocation. FCLROOTLAN
specifies the path of the LAN server workstation where
VisualLift resides.

[/FCLRTS=path] Overrides the setting of the environment variable FCLRTS
for this invocation. FCLRTS specifies the path where the
VisualLift run-time environment resides.

[/FCLLANGUAGE=language]
Overrides the setting of the environment variable
FCLLANGUAGE for this invocation. FCLLANGUAGE
specifies the language of VisualLift. The default language
is English.

[/FCL_SESSMODE={HIDE|SHOW}]
Overrides the setting of the environment variable
FCL_SESSMODE for this invocation. FCL_SESSMODE
specifies if the emulator window is not visible/visible at the
same time as the VisualLifted application.

[/FCL_TIMEOUT=timeoutval]
Overrides the setting of the environment variable
FCL_TIMEOUT for this invocation. FCL_TIMEOUT
species the time in seconds the VisualLifted application
waits for a host reaction.

[/FCLATTACHDLL=dllname]
Overrides the setting of the environment variable
FCLATTACHDLL for this invocation. Specifies the DLL
name only without drive, directory, or extension.

 Copyright IBM Corp. 1995, 1996 103

 Options for Running a VisualLifted Application

[/FCLATTACHPROC=procname]
Overrides the setting of the environment variable
FCLATTACHPROC for this invocation.
FCLATTACHPROC specifies the procedure offering the
EHLLAPI interface.

[/FCL_EMULATOR={CM2|PC3270|IRMA|RUMBA|EXTRA!|EMUTEST}]
Overrides the setting of the environment variable
FCL_EMULATOR for this invocation. FCL_EMULATOR
specifies one of the supported emulators (this does not
apply for VisualLift RTE for Windows).

[/DEBUG=debugoption, debugoption]
Creates various traces for debugging purposes. Debug
options are ANALYZE, PFE, TRACE, VT, PSDUMP, and
EHLLAPI (for VisualLift RTE for Windows only EHLLAPI
is supported).

104 VisualLift User's Guide

 Glossary

Glossary terms are defined as
used within this book. If you
cannot find the term you are
looking for, refer to the index or to:

 � Object-Oriented Interface
Design, SC34-4399

� IBM Dictionary of Computing,
New York: McGraw-Hill, 1994.

Terms of this glossary are also
available in the help information of
VisualLift and in the VisualLift
Reference.

A
action routine . An action routine
is used to affect the VisualLifted
user interface. For example,
controls within a workstation
window may depend on another
control without exchanging data
with the host application.

ADE. The Application
Development Environment (ADE) is
the part of VisualLift where the new
user interface for the host
application is designed, created
and bundled. The ADE becomes
visible in the form of the VisualLift
Workbench. The VisualLift
Workbench consists of a set of
object oriented tools.

application . A VisualLift
application represents the new
user interface for a host
application. Throughout VisualLift
a VisualLift application is called
application. An application
contains the created PWS
Windows as well as invocation and
termination information of the host
application. The application is the
result of VisualLifting.

application provided routines . A
VisualLifted application may
provide additional functions by
supplying user-written routines.
Within these routines, the set of
functions provided by the run-time
environment may be extended.

The VisualLifted application has to
provide one or more DLLs
containing the routines. It also has
to define the routines to be called
for a specific window.

B
button . (1) A mechanism on a
pointing device, such as a mouse,
used to request or initiate an action
or a process. (2) A graphical
device that identifies a choice.
(3) A graphical mechanism that,
when selected, performs a visible
action. For example, when a user
clicks on a list button, a list of
choices appears.

C
cascaded menu . A menu that
appears from, and contains
choices related to, a cascading
choice in another menu.
Cascaded menus are used to
reduce the length of a pull-down
menu or a pop-up menu.

cascaded choice . A choice on a
menu that leads to a cascaded
menu containing related choices.
A cascading choice is indicated by
a rightward-pointing arrow (→) to
the right of the choice.

check box . A square box with
associated text that represents a
choice. When a user selects the
choice, an x (or a checkmark)
appears in the check box to
indicate that the choice is selected.
The user can clear the check box
by selecting the choice again,
thereby canceling the selection.
Check boxes may be used in a
group to provide a multiple choice
field.

checking routine . A checking
routine is used to extend the input
validation provided by the run-time
environment. A checking routine
acts on the user interface of the

workstation without exchanging
data with the host application.

check marks . A character that
indicates that a settings choice is
active.

click . To press and release a
button on a pointing device without
moving the pointer of the object or
choice.

combination box . A control that
combines the functions of an entry
field and a list box. A combination
box contains a list of objects that a
user can scroll through and select
from to complete the entry field.
Alternatively, a user can type text
directly into the entry field.

controls . Visual user-interface
components that allow a user to
interact with data. Controls are
usually identified by text, for
example, headings, labels in push
buttons, field prompts, and titles in
windows.

current-setting indicator . A
visible indication that a choice is
active or inactive, for example the
x (or a checkmark) that appears in
a check box when it is selected.

de-selection . The process of
removing selection from a
previously selected object.

D
double-click . To press and
release a button on a pointing
device twice while a pointer is
within the limits that the user has
specified for the operating
environment.

drag . To use a pointing device to
move or copy an object. For
example, a user can drag a
window border to make it larger.
To drag something, a user presses
and holds a button on the pointing
device while moving the pointing
device.

 Copyright IBM Corp. 1995, 1996 105

drag and drop . To directly
manipulate an object by moving it
and placing it somewhere else
using a pointing device.

drop-down combination box . A
combination box in which the list is
hidden until a user takes an action
to make it visible. A drop-down
combination box contains a list of
objects or settings choices that a
user can scroll through and select
from to complete the entry field.
Alternatively, a user can type text
directly into the entry field. The
typed text does not have to match
one of the objects or settings
choices contained in the list.

drop-down list . A drop-down list
is a variation of a list box. A
drop-down list only displays one
item until the user takes an action
to display the other objects or
choices. Like a list box, the
drop-down list does not allow a
user to type information into it.

E
emphasis . Highlighting, color
change, or other visible indication
of the condition of an object or
choice and the effect of that
condition on a user's ability to
interact with that object or choice.
Emphasis can also give a user
additional information about the
state of an object or choice.

entry field . A control into which a
user places text. Its boundaries
are usually indicated. Entry fields
can scroll if more information is
available than is currently visible.

event . An event is a condition at
the host that is not covered by data
in the application description file.
These events are specified globally
in event definition files. Event
definitions can be added to the
system event definition file.

G
graphic editor . With the graphic
editor controls can be created or
changed via dialogs and drag and
drop operations.

group box . A rectangular box
drawn around a group of controls
to indicate that the controls are
related and to provide a label for
the group.

group heading . A heading that
identifies a set of related fields.

H
help exit routine . A help exit
routine is used to provide context
sensitive help information for an
application.

host screen . A Host Screen
object is the screen capture of a
host screen. The Host Screen
object is located at the workstation.
It is the base for the design of
PWS Windows. It is also used to
define the mapping between Host
and PWS when working with the
VisualLift graphic editor.

I
icon . A pictorial representation of
an object, consisting of an image,
image background, and a label.
Small icons can be substituted for
regular icons. The small icon in
the title bar of a window is another
icon for the object that is displayed
in the window.

information window . A specific
part of a window in which
information about the object or
choice that the cursor is on is
displayed. The information area
can also contain a message about
the completion of a process.

L
list box . A control that contains a
list of objects or settings choices
that a user can select. List boxes
support single or multiple selection.

M
mapping . The connection
between the input/output fields on
the host screen and the designed
workstation controls. The mapping
ensures that the information
received and sent to/from the host
application is handled by the
corresponding workstation control.

mapping routine . A mapping
routine is used to extend the
default Host-PWS mapping of the
run-time environment.

menu . A list of choices that can
be applied to an object. A menu
can contain choices that are not
available for selection in certain
contexts. Those choices are
indicated by reduced contrast.

menu bar . The area near the top
of a window, below the title bar
and above the rest of the window,
that contains routing choices that
provide access to pull-down
menus. Typically a menu bar
choice is a single word.

menu bar choice . A graphical or
textual item on a menu bar that
provides access to pull-down
menus which contain choices that
can be applied to an object.

menu choice . A graphical or
textual item on a menu. A user
selects a menu choice to work with
an object in some way.

message . Information not
requested by a user but displayed
by a product or application in
response to an unexpected event,
or when something undesirable
could occur, or as information.

mouse . A commonly used
pointing device that has one or

106 VisualLift User's Guide

more buttons that a user presses
to interact with a computer system.

mouse button . A mechanism on
a mouse pointing device used to
select choices, initiate actions, or
manipulate objects with the pointer.
The button makes a clicking sound
when pressed and released.

multi-line entry field . A control
into which a user places several
lines of text. Its boundaries are
usually indicated. Multi-line entry
fields can be scrolled if more
information is available than is
currently visible.

multiple selection . A type of
selection in which a user can
select any number of objects or
settings choices, or not select any.

N
notebook . A graphical
representation that resembles a
bound notebook that contains
pages separated into sections by
tabbed divider pages. A user can
turn the pages of a notebook to
move from one section to another.

O
object . An item that can be
manipulated as a unit and that a
user works with to perform a task.
An object can be represented as
text, image, graphic, or audio.

P
padding . Padding is the filling up
of characters of entry fields during
mapping of Host ⇔ PWS controls.
Whenever less characters than the
maximum for the host value are
specified, padding takes effect.

padding character . The
character used to fill up missing
characters of a host entry field if
less characters than the maximum
are specified. A padding character
may be either any character or Null
(hexadecimal zero '00'X). Blank is
the default.

panel identification exit routine .
A panel identification exit routine is
used to modify the results of the
panel identification process
according to the needs of the
application.

pointer . A visible cue, usually in
the shape of an arrow, that a user
can move with a pointing device.
Users place the pointer over
objects they want to work with.

pointing device . A device, such
as a mouse, trackball, or joystick,
used to move a pointer on the
screen.

pop-up menu . A menu that,
when requested, is displayed next
to the object it is associated with.
It contains choices appropriate for
a given object or set of objects in
their current context.

primary window . An area on the
display screen used to present a
view or to conduct a dialog with a
user. The two types of windows
are primary windows and
secondary windows. Windows are
used to present controls,
messages, and help information.

programmable workstation
(PWS). A workstation that has
some degree of processing
capability and that allows a user to
change its functions.

progress indicator . One or more
controls used to inform a user
about the progress of a process.

project . A Project within VisualLift
is the place where the VisualLifting
takes place. Define Projects to
organize all objects of one
Application within one Project.
Projects available reside in the
VisualLift Workbench. Within a
Project the following objects may
reside: Application, Host Screen,
PWS Window, and PWS Window
(Text).

pull-down menu . A menu that
extends from a selected choice on
a menu bar or from the

system-menu symbol. The choices
in a pull-down menu are related to
one another in some manner.

push button . A button, labeled
with text, graphics, or both, that
represents an action that will be
initiated when a user selects it.

PWS. Programmable workstation.

PWS Window . A PWS Window is
the graphical representation of a
PWS Window (Text). The PWS
Window contains window and
control definitions. It can be
created or modified with the
VisualLift graphic editor. A PWS
Window can be converted into a
PWS Window (Text) and vice
versa. PWS Windows are the
source for building an Application.
There are two representations of
PWS Windows:

PWS Window without
inserted panel ID.

PWS Window with inserted
panel ID.

PWS Window (Text) . A PWS
Window (Text) is the textual
representation of a PWS Window.
The PWS Window (Text) contains
the window and control definitions
in a declarative language. It can be
created or modified with an editor.
A PWS Window (Text) can be
converted into a PWS Window and
vice versa.

R
radio button . A control used to
display mutually exclusive textual
settings choices visualized by a
circle with text beside it. Radio
buttons are combined to show a
user a fixed set of choices from
which the user can select one.
The circle becomes partially filled
when a choice is selected.

RTE. The Run-Time Environment
(RTE) is the executing part of
VisualLift. It is used to run the
VisualLifted application. The RTE
is the bridge between the user
interface on the workstation and

 Glossary 107

the application on the host.
Basically the RTE invokes and
terminates the host application,
displays the workstation user
interface, and manages user input.

S
scroll bar . A window component
that shows a user that more
information is available in a
particular direction and can be
scrolled into view. Scroll bars can
be either horizontal or vertical.

secondary window . A window
that contains information that is
dependent on information in a
primary window and is used to
supplement the interaction in the
primary window.

selected-state emphasis .
Emphasis used on a choice or
object to indicate that it is selected.

selection . The act of explicitly
identifying one or more objects to
which a subsequent choice will
apply.

shortcut key . A key or a
combination of keys assigned to a
menu choice that initiates that
choice, even if the associated
menu is not currently displayed.

slider . A visual component of a
user interface that represents a
quantity and its relationship to the
range of possible values for that
quantity. A user can also change
the value of the quantity.

spin button . A control used to
display, in sequence, a ring of
related but mutually exclusive
choices. It contains a field that can
accept user input, which allows a
user to make a selection by typing

a valid choice, or a field that can
display a value that the user can
merely accept. The user can
change the value by spinning
through the ring of choices.

status area . A part of a window
where information appears that
shows the state of an object or the
state of a particular view of an
object.

T
tabbed divider page . A graphical
representation of a tabbed page in
a notebook. Tabbed divider pages
separate sections of the notebook.

template . An object that you can
use as a model to create additional
objects. When you drag a
template you create another of the
original object by dropping it over
the target destination. VisualLift
offers template objects for
Application, Project, Host Screen,
PWS Window, and PWS Window
(Text).

trouble log . The trouble log is a
file where error messages
occurring in the run-time
environment are recorded. For
each message a detailed
explanation can be requested. The
purpose of the trouble log is to
assist users in problem
determination.

U
unavailable-state emphasis . A
visible cue that indicates that a
choice cannot be selected.

user control . Used to reserve
space in a window for a user
defined control. The user defined
control can be anything. A window

procedure has to be provided by
the application to manage the user
control.

V
value set . A control that allows a
user to select one choice from a
group of mutually exclusive
choices. A value set is used
primarily for graphical choices.

variable table . A VisualLift data
structure containing the definition
of all the variables used in a
function to communicate with the
user.

VisualLift . A tool to modernize
the user interface of existing host
applications. The new user
interface is located on the
workstation. The host application
remains untouched. This means
that an existing host application
has now two user interfaces: the
existing one and the VisualLifted
one.

W
window . An area with visible
boundaries that presents a view of
an object or with which a user
conducts a dialog with a computer
system.

window procedure . A window
procedure for private controls is
used to define controls which are
not supported by VisualLift.
Window procedures for private
controls can be specified as a
presentation attribute of a user
control.

window title . The area on a title
bar that contains the name of the
object or a short description of the
contents of the window.

108 VisualLift User's Guide

 Index

 Index

Numerics
3270 session, simulated 26

A
accelerator key 84
action routine 67, 105
ADE 105
algorithm, panel identification 14
application 58

definition 105
end conditions 13, 60
invocation 12
switching 15

application development environment 7
accelerator key 84
application provided files 99
CONFIG.SYS 100
dynamic entry fields 84
environment variables 101
export applications and projects 82
graphical mode 9
group controls 84
LAN 19
message mapping 84
refresh 83
textual mode 9
workbench 7, 82

application provided files 99
window files 100

application provided routines 67, 105
action routine 67
checking routine 67
for Windows 71
help exit routine 67
mapping routine 67
optional software 98
panel id exit routine 67
reference 68
samples 67
window procedure 67

arrangement of window contents 9
audience 4
automated build process 79

generate application 80
generate PWS Window 80
generate PWS Window (Text) 79
generate textual application format 79
semantic check 80

B
build PWS window 51
build text 47
button 105

C
cascaded choice 105
cascaded menu 105
check box 105
check marks 105
check semantic 80
checking routine 67, 105
clean-up VisualLift 81
Client installation 20
combination box 105
common problems 87

OS/2 89
Windows 93

compare objects 90
CONFIG.SYS updates 100
controls 105

defining a check box 45
defining a group box 44
defining a push button 46
defining an entry field 42
dynamic entry fields 84
group controls 84
host 5
layout 10
number of controls 81
position 9
relative layouting 9
size 9
workstation 5

copying an application 64
current-setting indicator 105

D
de-selection 105
defining

check box 45
entry field 42
group box 44
push button 46
the session ID 35, 66

deleting controls 85
design guidelines 27
designing a PWS window 40, 83
different service level 24

 Copyright IBM Corp. 1995, 1996 109

 Index

distributing an application 64
distribution

command files 65
via diskette or LAN (application) 65
via host (application) 65

drag and drop 36, 106
drop-down combination box 106
drop-down list 106

E
emphasis 106
end condition 60
end VisualLift 81
entry field 106
environment variables 101
event file 67
events

defining 67
definition 106
examples for 67

exclude objects 82
exit routines 67

action routine 67
checking routine 67
for Windows 71
help exit routine 67
mapping routine 67
panel id exit routine 67
reference 68
samples 67
window procedure 67

export applications and projects 82
extend panel id 57

F
FCL_EMULATOR 101
FCL_SESSMODE 101
FCL_TIMEOUT 91, 101
FCLADS 101
FCLATTACHDLL 101
FCLATTACHPROC 101
FCLLANGUAGE 101
FCLREF parameter 3
FCLROOT 91, 101
FCLROOTLAN 101
FCLRTS 101
focus of controls 15
free occupied space 77

G
generating

application 80
PWS Window 80

generating (continued)
PWS Window (Text) 79
textual application format 79

glossary 105
graphic editor 41

drag and drop 84
window definition 84

graphical mode 9
group box 106
group controls 84
group heading 106

H
help 68

directory 68
file 68
help id 68
how to access 2
IPF 68
OS/2 68
RTF 68
sample 69
textual mode 68
Windows 68
Windows help 72

help exit routine 67, 106
hints 81

accelerator key 84
drag and drop 84
dynamic entry fields 84
export applications and projects 82
free storage 81
group controls 84
import applications and projects 82
message mapping 84
monitor resolution 85
number of controls 81
number of windows 81
refresh 83
terminal models 85
transformation 82
using VisualLift 81

host cursor 15
data

host⇒PWS direction 16
PWS⇒host direction 16

host distribution 65
host screen 38, 106

I
icon 106
import applications and projects 82
include objects 82

110 VisualLift User's Guide

 Index

information window 106
init condition 59
installation 23

CONFIG.SYS updates 100
diskette process 23
environment variables 101
hard disk space 23
host process 23
optional software 98
system requirements 24, 97
Windows environment variables 72

environment space 72
rules 72

interaction 32
drag and drop 36, 84

invoking an application 12
IPF (Information Presentation Facility) 68

L
LAN 19

Client installation 20
CONFIG.SYS 100
environment variables 101
host connection 21
principle 19
rules 19
Server installation 20
Windows environment variables 72

list box 106

M
mapping

colors and attributes 17
data 16
definition 106
host cursor 15
how to do - Task 4 53
input focus 15
routine 67
routine, definition 106

menu 106
menu bar 106
menu bar choice 106
menu choice 106
message 106
minimize icons 72
modes 9

declarative language 9
expert user 9
graphical mode 9
novice user 9
samples 9
textual mode 9
transformation 9

modes (continued)
window definitions 9

modify panel id 57
monitor resolution 85, 90
mouse 106
mouse button 107
multi-line entry field 107
multiple languages 69

directory 69
environment variable 70

multiple selection 107

N
NLS 21

concurrent multiple languages 70
directory 69
environment variable 70
multiple languages 69
translate NLS files 69

notebook 107

O
object

definition 107
hierarchy 25

optional software 98
optional tasks 66

application provided routines 67
define events 67

reference 67
directory 68
file 68
help id 68
IPF 68
multiple languages 69

directory 69
environment variable 70

OS/2 68
sample 69
supply help 68
textual mode 68
Windows 68

optional workstation software 98

P
padding

characters 18, 107
definition 107
host⇒PWS 18
PWS⇒host 18

panel identification
algorithm 14
exit routine 67, 107

 Index 111

 Index

panel identification (continued)
process 14

parameter
end condition 12
FCL_TIMEOUT 91
FCLREF 3
for a VisualLift application 66
init condition 12
invocation 12

play PWS window 52, 63
pointer 107
pointing device 107
pop-up menu 107
pre-load libraries 76
primary window 107
problem 87

common 87
OS/2 89
trouble log 88

open 88
view 88

Windows 93
processing sequence, run-time 12
programmable workstation (PWS) 107
progress indicator 107
project 107
pull-down menu 107
push button 107
PWS 107
PWS window 40, 107

build PWS window 51
build text 47
create 40
define controls 41

graphic editor 41
files 100
number of controls 81
number of windows 81
play 52
textual mode 48
transformation 47
view 52
with panel id 57
without panel id 57

PWS window (text) 47, 107

R
radio button 107
README file, sample applications 26
reference

content 3
invocation 3
programming interface 3

refresh 83

relative layouting 9
RTE (Run-Time Environment) 107
RTF (Rich Text Format). 68
run-time environment 10

CONFIG.SYS 100
environment variables 101
LAN 19
monitor resolution 85
processing sequence 12
tasks 10

create program object 66
distribute application 64
overview 10
run application 66

terminal models 85
run-time options 103

S
sample application

Composer 26
Print 26
README 26
testing against 36

samples
application provided routines 3
controls 3
directory 3
file 3

SAMPLES project 1, 3, 49, 59, 68, 69
screen

after VisualLifting 5
before VisualLifting 5
dynamic entry fields 84

screen not recognized 89
scroll bar 108
secondary window 108
selected-state emphasis 108
selection 108
selection state 53
semantic check 80
Server installation 20
service level 24

check service level 24
different 24

session
define 35
ID 66
simulated 3270 26
specifying 89
terminal models 85

shortcut key 108
simulated 3270 session 26
skills

host application 3
OS/2 3

112 VisualLift User's Guide

 Index

skills (continued)
programming 3
subject matter 3
user interface design 3
Windows 3

slider 108
Solution Guide 1, 2, 27, 41

reference
See reference

spin button 108
start application 73

create program item 74
status area 108
stop VisualLift 81
system requirements 97

application development environment 97
optional software 98
OS/2 run-time environment 97
Windows run-time environment 98

T
tabbed divider page 108
tasks

build application 58
build panel id 57
create project 36
design PWS window 40
overview 8
perform mapping 53
scan host screen 38
test application 63
VisualLift set-up 34

template 36, 108
terminal models 85
terminology 4

glossary 4, 31, 105
terminology 31

test application 63
text editor definition 35
textual mode 9, 45, 47, 48
timeout message 91
tips 81

accelerator key 84
drag and drop 84
dynamic entry fields 84
export applications and projects 82
free storage 81
group controls 84
import applications and projects 82
message mapping 84
monitor resolution 85
number of controls 81
number of windows 81
refresh 83
terminal models 85

tips (continued)
transformation 82
using VisualLift 81

transformation 47
build PWS window 51
build text 47
change panel id 57
comments 82
INCLUDE 82
sequence 82
textual mode 48
warning 82

trouble log 88, 108
OS/2 88
Windows 88

U
unavailable-state emphasis 108
user control 108
users 4
using VisualLift 31

accelerator key 84
export applications and projects 82
free storage 81
import applications and projects 82
monitor resolution 85

V
value set 108
variable table 108
VisualLift

3270 terminal 6
adding your own functions 22

action routine 22
checking routine 22
help exit routine 22
mapping routine 22
panel id exit routines 22
samples 22
window procedures 22

application development environment 7
application provided files 99
candidates 6
characteristics 6
components 7
concepts 7
create program object 66
definition 5, 108
export applications and projects 82
host application 6
import applications and projects 82
integrity 11
LAN 19
NLS 21

 Index 113

 Index

VisualLift (continued)
Reference 1, 3
run-time environment 7
sample application 36
tasks 31
technology 11
Windows RTE 71
Workbench 26, 82
workstation 6

VisualLift objects
application 62
compare objects 90
host screen 38
object hierarchy 25
project 36
PWS Window 40
PWS Window (Text) 47
template 36

VisualLift tasks
application provided routines 67
build application 58

application object 62
application provided routines 61
end condition 60
init condition 59
notebook 58, 60, 62

build panel id 57
create project 36
define events 67

reference 67
design PWS window 40

graphical mode 41
sample 48
textual mode 48
transformation 47

distribute application 64
extend panel id 57
interaction 32
modify panel id 57
multiple languages 69

concurrent multiple languages 70
translate NLS files 69

optional tasks 66
application provided routines 67
define events 67
multiple languages 69
supply help 68

overview 33
perform mapping 53

notebook 53, 54, 55
textual mode 56

run application 66
scan host screen 38
supply help 68
test application 63
VisualLift set-up 34

VisualLift Windows 71
considerations 71
deviations 71
free occupied space 77
performance 73
pre-load libraries 76
space 73
start application 73

without specification 75

W
window 108
window contents, arrangement 9
window definition 84
window procedure 67, 108
window title 108
Windows application provided routines 71
Windows considerations 71

application provided routines 71
environment variables 72

environment space 72
rules 72

help 72
minimize icons 72
user interface 71

Windows deviations 71
Windows environment variables 72
Windows help 72
Windows performance 73
workbench

explanation 26
export applications and projects 82
import applications and projects 82

114 VisualLift User's Guide

IBM

File Number: S370/S390-20
Program Number: 5648-109

Printed in U.S.A.

SC33-6691-ð2

/XRL/1

Table Definitions

id File Page References

REQA FCLAREQ
97 97, 97, 98

SYSEXT FCLASYS
 99 99, 100
ENVIR FCLASYS
 101 101
ENVV FCLASYS
 102 102

Figures

id File Page References

SKILL FCLAINTR
 3 2
 3
HOST FCLAWHAT
 5 3
 5
VL FCLAWHAT
 5 4
 5
BASE FCLACONC
 7 5
 7
TASK1 FCLACONC
 8 6
 8, 9
TASK2 FCLACONC
 11 7
 10
3270 FCLACONC
 11 8
 11
VLAN FCLACONC
 19 9
 19
HIER FCLASOL
 25 10
SOLG FCLASOL
 28 11
SOLE FCLASOL
 29 12
ENTRYM FCLASOL
 30 13
COMP1 FCLATATH
 32 14
TASK FCLATATH
 33 15
 31, 31
COMP FCLATATH
 38 16
TCB1 FCLATATH
 48 17
TCB2 FCLATATH
 48 18
SMPTXT FCLATATH
 50 19
 49
TLE FCLAPROB
 88 20
SYSAPP FCLASYS
 99 21
SYSWIN FCLASYS
 100 22
ENVIRM FCLASYS
 101 23
ENVVA FCLASYS
 102 24

/XRL/2

Headings

id File Page References

NOTICES FCLANOT
 ix Notices
 ii
VLWHAT FCLAWHAT

5 Chapter 2, What is VisualLift?
 2
VLCON FCLACONC

7 Chapter 3, VisualLift Concepts
 2
GRATE FCLACONC

9 Graphical and Textual Mode
 47
CONADAW FCLACONC

9 Arrangement of Window Contents
INT FCLACONC
 11 Integrity
CONRTAI FCLACONC
 12 Application Invocation
 13, 61
CONRTPS FCLACONC

12 Run-time Processing Sequence
 61
CONRTPI FCLACONC

14 Panel Identification Process
 12, 57
CONRTAS FCLACONC
 15 Application Switching
 13
CONRTHC FCLACONC

15 Mapping of Host Cursor and Input Focus
CONRTNB FCLACONC

16 Selection of the Active Notebook Page
CONRTDM FCLACONC
 16 Data Mapping
CONRTCM FCLACONC

17 Mapping of Colors and Attributes
CONRTPA FCLACONC
 18 Padding
 16, 16
LAN FCLACONC

19 VisualLift and LAN
 64
SERVLAN FCLACONC

20 LAN Installation (Server)
CLIELAN FCLACONC

20 LAN Installation (Client)
INST FCLAINST

23 Chapter 4, Installation
2, 4, 20, 64

INSHOST FCLAINST
23 Host Installation Process

INSDISK FCLAINST
23 Diskette Installation Process

GST FCLASOL
25 Chapter 5, Getting Started

 2
SIM FCLASOL

26 Simulated 3270 Session
COMPA FCLASOL

26 Composer - VisualLift Sample Application
PRINTA FCLASOL

26 Print - VisualLift Sample Application
READA FCLASOL

26 Sample Application README file
WOBE FCLASOL
 26 VisualLift Workbench
SOLGUI FCLASOL

27 VisualLift Online Solution Guide
ACC FCLASOL

28 Accessing the Solution Guide
WORK FCLATATH

31 Chapter 6, Using VisualLift
2, 8, 10, 26

TSKS FCLATATH
 31 VisualLift Tasks
 4
TAINT FCLATATH

/XRL/3

 32 Interaction Techniques
TA0 FCLATATH

34 Setting-up VisualLift - Task 0
TA1 FCLATATH

36 Creating a Project - Task 1
TA2 FCLATATH

38 Scanning a Host Screen - Task 2
TA3 FCLATATH

40 Designing a PWS Window - Task 3
 38, 56
TA4 FCLATATH

53 Performing Mapping - Task 4
TA5 FCLATATH

57 Building a Panel ID - Task 5
 14, 89
TA6 FCLATATH

58 Building an Application - Task 6
 89
TA7 FCLATATH

63 Testing a VisualLifted Application - Task 7
TA8 FCLATATH

64 Distributing a VisualLifted Application - Task 8
DILAN FCLATATH

65 Distribution via Diskette or LAN
DIHOS FCLATATH

65 Distribution via Host
TA9 FCLATATH

66 Running a VisualLifted Application - Task 9
DEV FCLATATH
 67 Defining Events
 12, 13
APROUT FCLATATH

67 Supplying Application Provided Routines
13, 22, 61

OPTML FCLATATH
69 Supporting Multiple Languages

 69
RULES FCLATATH

69 Rules for Translating NLS Files
 70
WIN FCLAWINS

71 Chapter 7, VisualLift RTE for Windows
 2
PERFORM FCLAWINS

73 Space and Time Performance
STAWIN FCLAWINS

73 Start a VisualLifted Application
 66
PROGI FCLAWINS

74 Create the Program Item
 75, 75
VLBAT FCLABAT

79 Chapter 8, VisualLift and Automated Build Process
 2
HINT FCLAHINT

81 Chapter 9, VisualLift Hints and Tips
 2
GEHI FCLAHINT
 81 General Hints
 15
EINC FCLAHINT

82 Exclude and Include
TRANS FCLAHINT
 82 Transformation
 47
PROB FCLAPROB

87 Chapter 10, Problem Determination
 2
TROUBLE FCLAPROB
 88 Trouble Log
PRO1 FCLAPROB
 89 Disk full
 87
PRO3 FCLAPROB
 89 Low performance
 87
PRO5 FCLAPROB

89 Scrambled tables within VisualLift Help or Reference
 87
PRO7 FCLAPROB

89 Host Screen not recognized at run-time

/XRL/4

 63, 87
PRO9 FCLAPROB

90 Host Screen not recognized, end of application instead
 87
PRO11 FCLAPROB

90 Workstation windows are too large
 87
PRO13 FCLAPROB

90 Another application is already active
 87
PRO15 FCLAPROB

90 Message 'Cannot start FCLXMAP.EXE ...' or SYS1804
 87
PRO17 FCLAPROB

91 The graphic editor abends
 87
PRO19 FCLAPROB

91 Error when calling a newly imported application
 87
PRO21 FCLAPROB

91 VisualLift gets timeout message
 87
PRO23 FCLAPROB

91 VisualLift starts and immediately ends
 87
PRO25 FCLAPROB

91 Message file not found
 87
PRO26 FCLAPROB

92 Application not found
 87
PRO27 FCLAPROB

92 No connection to host emulator
 87
PRO28 FCLAPROB

92 The application cannot be started
 87
PRO29 FCLAPROB

92 Would like to view the host application
 87
PRO30 FCLAPROB

92 IBM service asks for a trace
 87
PRO35 FCLAPROB

93 Main storage too small
 87
PRO37 FCLAPROB

93 Application not found
 87
PRO39 FCLAPROB

93 DLLs not found when starting application
 87
PRO41 FCLAPROB

93 No connection to host emulator
 87
PRO43 FCLAPROB

94 The application cannot be started
 87
PRO47 FCLAPROB

94 The old version of an application is invoked
 87
PRO49 FCLAPROB

94 Would like to view the host application
 87
PRO51 FCLAPROB

94 After leaving VisualLift, a VisualLift icon remains on the screen
 87
PRO53 FCLAPROB

94 VisualLift beeps and/or ends without an error message
 87
PRO55 FCLAPROB

94 General protection fault in a DLL belonging to the host emulator
program

 87
PRO57 FCLAPROB

94 Problem during installation of VisualLift Windows RTE
 87
PRO59 FCLAPROB

95 Problems using the RUMBA emulator
 87
PRO61 FCLAPROB

/XRL/5

95 Workstation windows are too large
 87
PRO63 FCLAPROB

95 IBM service asks for a trace
 87
PRO65 FCLAPROB

95 Message in trouble log if screen is sizeable
 87
REQ FCLAREQ

97 Appendix A, System Requirements
 24, 71
SYS FCLASYS

99 Appendix B, System Information
 73
SYSFILE FCLASYS

99 Files of a VisualLifted Application
 64
CS FCLASYS

100 CONFIG.SYS Updates by OS/2 VisualLift
ENVIVAR FCLASYS
 101 Environment Variables

4, 20, 91
APOPT FCLAOPT

103 Appendix C, Options for Running a VisualLifted Application
66, 74, 92

GLOSSAR FCLAG SCRIPT
 105 Glossary
 4, 31

Index Entries

id File Page References

IVL FCLAINDX
 1 (1) VisualLift

1, 3, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 11, 11, 19, 21, 22, 26, 31,
36, 66, 71, 82, 82, 82, 99, 108

ISCREEN FCLAINDX
 1 (1) screen

5, 5, 84
ICONTR FCLAINDX
 1 (1) controls

5, 5, 9, 9, 9, 10, 42, 44, 45, 46, 81, 84, 84
IHELP FCLAINDX
 1 (1) help
 2, 72
IREF FCLAINDX
 1 (1) reference

1, 3, 3, 3, 3
ISAMP FCLAINDX
 1 (1) samples

3, 3, 3, 3
ISKILL FCLAINDX
 1 (1) skills

3, 3, 3, 3, 3, 3
IOBJ FCLAINDX
 1 (1) VisualLift objects

25, 36, 36, 38, 40, 47, 62, 90
ITASK FCLAINDX
 1 (1) VisualLift tasks

32, 33, 34, 36, 38, 40, 53, 57, 58, 63, 64, 66, 66, 67, 67,
68, 69

ISID FCLAINDX
 1 (1) session

26, 35, 66, 85, 89
IEV FCLAINDX
 1 (1) events

67, 67, 106
IGENER FCLAINDX
 1 (1) generating

79, 79, 80, 80
PARA FCLAINDX
 1 (1) parameter

3, 12, 12, 12, 66, 91
PANIN FCLAINDX
 1 (1) panel identification

14, 14, 67, 107
MAPIN FCLAINDX
 1 (1) mapping

/XRL/6

15, 15, 16, 17, 53, 67, 106, 106
PADD FCLAINDX
 1 (1) padding

18, 18, 18, 107, 107
OBJE FCLAINDX
 1 (1) object
 25, 107
SAMA FCLAINDX
 1 (1) sample application

26, 26, 26, 36
IWORK FCLAINDX
 1 (1) workbench

26, 82, 82
DISTR FCLAINDX
 1 (1) distribution

65, 65, 65
APLIC FCLAINDX
 1 (1) application

12, 13, 15, 60, 105
IDCO FCLAINDX
 1 (1) defining

35, 42, 44, 45, 46, 66
ITAA FCLAINDX
 1 (1) tasks

8, 34, 36, 38, 40, 53, 57, 58, 63
ITERM FCLAINTR
 4 (1) terminology

4, 31, 31, 105
IADE FCLACONC

7 (1) application development environment
7, 9, 9, 19, 82, 82, 83, 84, 84, 84, 84, 99, 100, 101

IMODE FCLACONC
 9 (1) modes

9, 9, 9, 9, 9, 9, 9, 9
IRTE FCLACONC
 10 (1) run-time environment

10, 12, 19, 85, 85, 100, 101
ITAR FCLACONC
 10 (1) run-time environment
 (2) tasks

10, 64, 66, 66
ILAN FCLACONC
 19 (1) LAN

19, 19, 20, 20, 21, 72, 100, 101
INLS FCLACONC
 21 (1) NLS

69, 69, 69, 70, 70
ISCOPE FCLACONC
 22 (1) VisualLift

(2) adding your own functions
22, 22, 22, 22, 22, 22, 22

IINST FCLAINST
 23 (1) installation

23, 23, 23, 24, 72, 97, 98, 100, 101
LEVEL FCLAINST
 24 (1) service level
 24, 24
IUSING FCLATATH
 31 (1) using VisualLift

81, 82, 82, 84, 85
IINT FCLATATH
 32 (1) interaction
 36, 84
IHST FCLATATH
 38 (1) host screen
IDES FCLATATH
 40 (1) VisualLift tasks

(2) design PWS window
41, 47, 48, 48

IPWS FCLATATH
 40 (1) PWS window

40, 41, 47, 48, 51, 52, 52, 57, 57, 81, 81, 100
IDC FCLATATH
 41 (1) PWS window
 (2) define controls

41, 47, 51
IGRED FCLATATH
 41 (1) graphic editor
 84, 84
ITRANS FCLATATH
 47 (1) transformation

/XRL/7

47, 48, 51, 57, 82, 82, 82, 82
IPERF FCLATATH
 53 (1) VisualLift tasks
 (2) perform mapping

53, 54, 55, 55, 56
IBPID FCLATATH
 57 (1) VisualLift tasks

(2) build panel id
 57, 57
IAPP FCLATATH
 58 (1) VisualLift tasks
 (2) build application

58, 59, 60, 60, 60, 61, 62, 62
IOPT FCLATATH
 66 (1) VisualLift tasks
 (2) optional tasks

67, 67, 68, 69
IOPTI FCLATATH
 66 (1) optional tasks

67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69
IEVEN FCLATATH
 67 (1) VisualLift tasks
 (2) define events
 67
IEVE FCLATATH
 67 (1) optional tasks
 (2) define events
 67
IAPRE FCLATATH

67 (1) application provided routines
67, 67, 67, 67, 67, 67, 67, 68, 71, 98

IEXIT FCLATATH
 67 (1) exit routines

67, 67, 67, 67, 67, 67, 67, 68, 71
ISHLP FCLATATH
 68 (1) help

68, 68, 68, 68, 68, 68, 68, 68, 69
IML FCLATATH
 69 (1) VisualLift tasks
 (2) multiple languages
 69, 70
IOPTL FCLATATH
 69 (1) optional tasks
 (2) multiple languages
 69, 70
IMLA FCLATATH
 69 (1) multiple languages
 69, 70
IRWIN FCLAWINS
 71 (1) VisualLift Windows

71, 71, 73, 73, 73, 76, 77
ICONS FCLAWINS
 71 (1) Windows considerations

71, 71, 72, 72, 72
IRUL FCLAWINS
 72 (1) Windows considerations
 (2) environment variables
 72, 72
IRULE FCLAWINS
 72 (1) installation

(2) Windows environment variables
 72, 72
IWSTAR FCLAWINS
 73 (1) VisualLift Windows
 (2) start application
 75
IWSTA FCLAWINS
 73 (1) start application
 74
IBUILD FCLABAT

79 (1) automated build process
79, 79, 80, 80, 80

IHINT FCLAHINT
 81 (1) hints

81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 84, 85, 85
ITIPS FCLAHINT
 81 (1) tips

81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 84, 85, 85
IPROB FCLAPROB
 87 (1) problem

87, 88, 89, 93

/XRL/8

IPROBL FCLAPROB
 87 (1) common problems
 89, 93
ITR FCLAPROB
 88 (1) problem
 (2) trouble log
 88, 88
ITROU FCLAPROB
 88 (1) trouble log
 88, 88
IREQ FCLAREQ
 97 (1) system requirements

97, 97, 98, 98
IPP FCLASYS

99 (1) application provided files
 100

Footnotes

id File Page References

PATH FCLAINTR
 4 1
 3
VIS FCLAINTR
 4 2
 4

Revisions

id File Page References

1 FCLAG SCRIPT
 109

1, 1, 2, 3, 7, 7, 9, 9, 14, 14, 15, 15, 15, 15, 15, 15, 16,
16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 23, 23, 23, 23, 24,
24, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 28,
29, 29, 29, 29, 29, 29, 30, 30, 32, 32, 34, 34, 36, 36, 36,
36, 36, 36, 36, 36, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39,
41, 41, 41, 41, 42, 42, 42, 42, 44, 44, 44, 44, 46, 46, 46,
46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48,
49, 49, 49, 49, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54,
54, 54, 54, 55, 55, 56, 56, 56, 56, 58, 58, 58, 58, 59, 59,
60, 60, 61, 61, 61, 61, 61, 61, 62, 62, 63, 63, 63, 63, 63,
63, 63, 63, 64, 64, 65, 65, 66, 66, 67, 67, 67, 67, 68, 68,
68, 68, 71, 72, 74, 74, 75, 75, 77, 77, 79, 79, 82, 82, 84,
84, 84, 85, 85, 85, 85, 85, 85, 85, 90, 91, 92, 92, 92, 92,
92, 92, 92, 92, 94, 94, 97, 97, 97, 97, 97, 97, 99, 99, 99,
99, 99, 99, 100, 100, 103, 103, 103, 103, 103, 103, 103,
103, 103, 103, 103, 103, 103, 103, 103, 103, 104, 104,
104, 104, 107, 107, 107, 107

2 FCLAG SCRIPT
 109

ii, ii, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 6, 6, 6, 6, 9, 10, 12, 18,
19, 21, 23, 24, 27, 30, 31, 31, 31, 32, 34, 34, 36, 36, 36,
36, 36, 36, 36, 36, 38, 38, 39, 39, 41, 41, 41, 41, 42, 42,
42, 42, 42, 42, 43, 43, 43, 43, 45, 45, 45, 45, 46, 46, 47,
47, 47, 47, 48, 49, 49, 49, 53, 53, 53, 53, 53, 53, 54, 54,
54, 54, 55, 55, 56, 56, 56, 56, 58, 58, 58, 58, 58, 58, 58,
58, 60, 60, 60, 60, 61, 61, 63, 63, 66, 66, 66, 71, 71, 71,
71, 82, 82, 83, 83, 84, 84, 87, 87, 87, 87, 89, 89, 90, 90,
90, 91, 95, 95, 97, 97, 104, 106, 106

3 FCLAG SCRIPT
 109

2, 2, 9, 9, 25, 26, 34, 34, 36, 36, 38, 38, 39, 39, 40, 40,
42, 42, 44, 44, 47, 47, 48, 48, 48, 48, 48, 48, 53, 53, 53,
54, 57, 57, 57, 57, 57, 57, 59, 59, 61, 61, 63, 63, 63, 63,
63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65,
65, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68,
68, 68, 103, 103, 103, 103, 103, 103

4 FCLAG SCRIPT
 109

32, 32, 34, 34, 67, 67, 68, 68, 68, 68
5 FCLAG SCRIPT
 109

/XRL/9

ix, ix, ix, ix, 19, 19, 19, 20, 71, 71, 73, 73, 73, 73, 82, 82,
92, 92, 93, 93, 98, 98, 98, 98, 98, 98, 99, 99, 101, 101,
101, 102, 102, 102

6 FCLAG SCRIPT
 109

88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89,
90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 92

Spots

id File Page References

PIPR FCLACONC
 14 (no text)
 68
SOLU FCLASOL
 28 (no text)
 1
STATA FCLATATH
 31 (no text)
 4
WBS FCLATATH
 34 (no text)
 91
HOID FCLATATH
 35 (no text)
 89
S2 FCLATATH
 38 (no text)
DRADRO FCLATATH
 44 (no text)
 43
CTM FCLATATH
 48 (no text)
 45, 47
INCO FCLATATH
 58 (no text)
 89
INVOC FCLATATH
 59 (no text)
 91
APEND FCLATATH
 60 (no text)
 90, 90
OPT FCLATATH
 66 (no text)
 91, 92
PROPA FCLATATH
 66 (no text)
 89
LOCK FCLAWINS
 76 (no text)
 77, 81

/XRL/10

Processing Options

Runtime values:
Document fileid ... FCLAG SCRIPT
Document type ... USERDOC
Document style ... IBMXAGD
Profile ... EDFPRF40
Service Level .. 0030
SCRIPT/VS Release .. 4.0.0
Date .. 98.02.05
Time .. 15:00:19
Device ... PSA
Number of Passes .. 4
Index ... YES
SYSVAR D ... YES
SYSVAR X ... YES

Formatting values used:
Annotation .. NO
Cross reference listing ... YES
Cross reference head prefix only ... NO
Dialog ... LABEL
Duplex .. YES
DVCF conditions file ... (none)
DVCF value 1 ... (none)
DVCF value 2 ... (none)
DVCF value 3 ... (none)
DVCF value 4 ... (none)
DVCF value 5 ... (none)
DVCF value 6 ... (none)
DVCF value 7 ... (none)
DVCF value 8 ... (none)
DVCF value 9 ... (none)
Explode ... NO
Figure list on new page .. YES
Figure/table number separation ... NO
Folio-by-chapter .. NO
Head 0 body text .. (none)
Head 1 body text .. Chapter
Head 1 appendix text ... Appendix
Hyphenation ... NO
Justification ... NO
Language .. ENGL
Keyboard .. 395
Layout ... OFF
Leader dots .. YES
Master index ... (none)
Partial TOC (maximum level) ... 4
Partial TOC (new page after) ... INLINE
Print example id's ... NO
Print cross reference page numbers .. YES
Process value ... (none)
Punctuation move characters,
Read cross-reference file ... (none)
Running heading/footing rule ... NONE
Show index entries ... NO
Table of Contents (maximum level) ... 3
Table list on new page ... YES
Title page (draft) alignment .. RIGHT
Write cross-reference file ... (none)

/XRL/11

Imbed Trace

Page i FA299EDN
Page vii FCLANOT
Page x FCLAINDX
Page x FCLAINTR
Page 4 FCLAWHAT
Page 6 FCLACONC
Page 22 FCLAINST
Page 24 FCLASOL
Page 30 FCLATATH
Page 70 FCLAWINS
Page 77 FCLABAT
Page 80 FCLAHINT
Page 85 FCLAPROB
Page 96 FCLAREQ
Page 98 FCLASYS
Page 102 FCLAOPT
Page 105 FCLAGLOS

